【題目】甲、乙兩車從城出發(fā)勻速行駛至城在整個行駛過程中,甲乙兩車離開城的距離與甲車行駛的時間之間的函數(shù)關系如圖所示下列說法錯誤的是(

甲、乙兩車從AA城出發(fā)勻速行駛至BB城在整個行駛過程中,甲乙兩車離開AA城的距離y(km)ykm與甲車行駛的時間t(h)th之間的函數(shù)關系如圖所示下列說法錯誤的是(

A.,兩城相距千米

B.乙車比甲車晚出發(fā)小時,卻早到小時

C.乙車出發(fā)后小時追上甲車

D.在一車追上另一車之前,當兩車相距千米時,

【答案】D

【解析】

由圖象所給數(shù)據(jù)可求得甲、乙兩車離開A城的距離y與時間t的關系式,可求得兩函數(shù)圖象的交點,進而判斷,再令兩函數(shù)解析式的差為40,可求得t,可得出答案.

由圖象可知A、B兩城市之間的距離為300km,故A正確;
設甲車離開A城的距離yt的關系式為,
把(5,300)代入可求得,
,

代入,可得:,

設乙車離開A城的距離yt的關系式為
把(1,0)和(2.5150)代入可得

解得:

,
可得:,解得
即甲、乙兩直線的交點橫坐標為t=2.5
乙的速度:150÷(2.5-1=100,
乙的時間:300÷100=3,
甲行駛的時間為5小時,而乙是在甲出發(fā)1小時后出發(fā)的,且用時3小時,即比甲早到1小時,故B正確;

甲、乙兩直線的交點橫坐標為t=2.5,此時乙出發(fā)時間為1.5小時,即乙車出發(fā)1.5小時后追上甲車,故C正確;

||,可得,即,
時,可解得,

時,可解得(不合題意,舍去),

又當時,,此時乙還沒出發(fā),

時(不合題意,舍去);

綜上可知當t的值為當時,兩車相距40千米,故D不正確;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C=90°,B=30°,AB=10,點D是射線CB上的一個動點,ADE是等邊三角形,點FAB的中點,連接EF.

(1)如圖,點D在線段CB上時,

①求證:AEF≌△ADC;

②連接BE,設線段CD=x,BE=y,求y2﹣x2的值;

(2)當∠DAB=15°時,求ADE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A在第一象限,點A,B關于y軸對稱.

1)若A1,3),寫出點B的坐標并在直角坐標系中標出.

2)若Aa,b),且△AOB的面積為a2,求點B的坐標(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在南開中學校慶78周年之際,由學生處和美術教研組共同策劃、組織了“南開中學校園明信片設計大賽”。獲得此次設計大賽組織一等獎的、、四個班級一共有75件作品獲獎,已知班參賽作品的獲獎率為30%,班參賽作品的獲獎率為40%。請結合兩幅統(tǒng)計圖所提供的信息,解決下列問題:

(1)四個班級一共選送了多少件作品參賽,獲獎率最高的班級是哪個班;

(2)請將條形統(tǒng)計圖補充完整;

(3)班的小欣和小怡同學在本次大賽中榮獲個人一等獎,此外兩班各有一名同學榮獲個人一等獎。南開中學校友會準備從這4名同學的作品中任選兩件,制作成新年賀卡送給老校友。請用列表法或畫樹狀圖的方法求出這兩件作品分別來自不同班級,且其中一件是小欣或小怡作品的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是正方形的邊上一點,下列條件中:;②;③.能使的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個橫截面是正方形的長方體平均截成段后,每段長分米,這樣表面積就增加了平方分米,原來長方體的表面積是________平方分米,體積是________立方分米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,垂足在線段上,、分別是、的中點,連接,、的延長線交于點,則下列結論:①;②:③;④.其中,正確結論的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若兩個分式的和為為正整數(shù)),則稱這兩個分式互為階分式,例如分式互為“3階分式”.

1)分式 互為“5階分式;

2)設正數(shù)互為倒數(shù),求證:分式互為“2階分式

3)若分式互為“1階分式(其中為正數(shù)),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+cx軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C/

(1)求拋物線C的函數(shù)表達式;

(2)若拋物線C/與拋物線Cy軸的右側有兩個不同的公共點,求m的取值范圍.

(3)如圖2,P是第一象限內(nèi)拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C/上的對應點P/,設MC上的動點,NC/上的動點,試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案