如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸是x=2,與x軸的一個交點是(﹣1,0),有下列結(jié)論:

①abc>0;

②4a﹣2b+c<0;

③4a+b=0;

④拋物線與x軸的另一個交點是(5,0);

⑤點(﹣3,y1),(6,y2)都在拋物線上,則有y1=y2

其中正確的是( 。

A.4個  B.3個   C.2個  D.1個

 


B【考點】二次函數(shù)圖象與系數(shù)的關(guān)系.

【分析】根據(jù)拋物線的圖象,數(shù)形結(jié)合,逐一解析判斷,即可解決問題.

【解答】解:∵拋物線開口向上,

∴a>0,b<0;由圖象知c<0,

∴abc>0,故①正確;

由拋物線的圖象知:當(dāng)x=﹣2時,y>0,

即4a﹣2b+c>0,故②錯誤;

∵拋物線的對稱軸為x=2,

∴﹣=2,b=﹣4a,

∴4a+b=0,故③正確;

∵拋物線y=ax2+bx+c與x軸有兩個交點,對稱軸是x=2,與x軸的一個交點是(﹣1,0),

∴拋物線與x軸的另一個交點是(5,0);故④正確;

∵對稱軸方程為 x=2,

∴(﹣3,y1)可得(7,y1

∵(6,y2)在拋物線上,

∴由拋物線的對稱性及單調(diào)性知:y1>y2,故⑤錯誤;

綜上所述①③④正確.

故選:B.

【點評】該題主要考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,拋物線的單調(diào)性、對稱性及其應(yīng)用問題;靈活運(yùn)用有關(guān)知識來分析是解題關(guān)鍵.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


觀察下列圖形規(guī)律:當(dāng)n=      時,圖形“●”的個數(shù)和“△”的個數(shù)相等.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,某個反比例函數(shù)的圖象經(jīng)過點P,則它的解析式為( 。

A.y=(x>0)   B.y=(x>0)     C.y=(x<0)   D.y=(x<0)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點P從點C出發(fā),沿CA方向運(yùn)動,速度是2cm/s,動點Q從點B出發(fā),沿BC方向運(yùn)動,速度是1cm/s.

(1)幾秒后P、Q兩點相距25cm?

(2)幾秒后△PCQ與△ABC相似?

(3)設(shè)△CPQ的面積為S1,△ABC的面積為S2,在運(yùn)動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時,平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達(dá)到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,則可以列出的方程是( 。

A.(3+x)(4﹣0.5x)=15  B.(x+3)(4+0.5x)=15   C.(x+4)(3﹣0.5x)=15  D.(x+1)(4﹣0.5x)=15

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AD是⊙O的直徑.

(1)如圖1,垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則∠B1的度數(shù)是      ,∠B2的度數(shù)是      ;

(2)如圖2,垂直于AD的三條弦B1C1,B2C2,B3C3把圓周6等分,則∠B3的度數(shù)是      ;

(3)如圖3,垂直于AD的n條弦B1C1,B2C2,B3 C3,…,BnCn把圓周2n等分,則∠Bn的度數(shù)是      (用含n的代數(shù)式表示∠Bn的度數(shù)).

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系中,已知點B的坐標(biāo)是(﹣1,0),點A的坐標(biāo)是(4,0),點C的坐標(biāo)是(0,4),拋物線過A、B、C三點.

(1)求拋物線的解析式.

(2)點N事拋物線上的一點(點N在直線AC上方),過點N作NG⊥x軸,垂足為G,交AC于點H,當(dāng)線段ON與CH互相平分時,求出點N的坐標(biāo).

(3)設(shè)拋物線的對稱軸為直線L,頂點為K,點C關(guān)于L的對稱點J,x軸上是否存在一點Q,y軸上是否一點R使四邊形KJQR的周長最。咳舸嬖,請求出周長的最小值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,觀測點A、旗桿DE的底端D、某樓房CB的底端C三點在一條直線上,從點A處測得樓頂端B的仰角為22°,此時點E恰好在AB上,從點D處測得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一個數(shù)是10,另一個數(shù)比10的相反數(shù)小2,則這兩個數(shù)的和為( 。

A.18     B.﹣2   C.﹣18 D.2

查看答案和解析>>

同步練習(xí)冊答案