【題目】如圖,已知為等邊三角形,為上一點(diǎn),為等邊三角形.
(1)求證:;
(2)與能否互相垂直?若能互相垂直,指出點(diǎn)在上的位置,并給予證明;若與不能垂直,請(qǐng)說(shuō)明理由.
【答案】(1)見解析;(2)AQ與CQ能互相垂直,此時(shí)點(diǎn)P在BC的中點(diǎn)
【解析】
(1)根據(jù)等邊三角形性質(zhì)得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根據(jù)SAS證△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根據(jù)平行線的判定推出即可.
(2)根據(jù)等腰三角形性質(zhì)求出∠BAP=30°,求出∠BAQ=90°,根據(jù)平行線性質(zhì)得出∠AQC=90°,即可得出答案.
(1)證明:∵△ABC和△APQ是等邊三角形,
∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,
∴∠BAP=∠CAQ=60°-∠PAC,
在△ABP和△ACQ中,
,
∴△ABP≌△ACQ(SAS),
∴∠ACQ=∠B=60°=∠BAC,
∴AB∥CQ;
(2)AQ與CQ能互相垂直,此時(shí)點(diǎn)P在BC的中點(diǎn),
證明:∵當(dāng)P為BC邊中點(diǎn)時(shí),∠BAP=∠BAC=30°,
∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,
又∵AB∥CQ,
∴∠AQC=90°,
即AQ⊥CQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】金瑞公司決定從廠家購(gòu)進(jìn)甲、乙兩種不同型號(hào)的顯示器共50臺(tái),購(gòu)進(jìn)顯示器的總金額不超過77000元,已知甲、乙型號(hào)的顯示器價(jià)格分別為1000元/臺(tái)、2000元/臺(tái).
(1)求金瑞公司至少購(gòu)進(jìn)甲型顯示器多少臺(tái)?
(2)若甲型顯示器的臺(tái)數(shù)不超過乙型顯示器的臺(tái)數(shù),則有哪些購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在平行四邊形ABCD中,∠C=60°,M、N分別是AD、BC的中點(diǎn),BC=2CD.
(1)求證:四邊形MNCD是平行四邊形;
(2)求證:BD=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( 。
A. 30 B. 34 C. 36 D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程(m-1)x2-x-2=0,
(1)若x=-1是方程的一個(gè)根,求m的值及另一個(gè)根;
(2)當(dāng)m為何值時(shí)方程有兩個(gè)不同的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ADE中,點(diǎn)P是線段BC上的動(dòng)點(diǎn)(P不與B、C重合),且AD經(jīng)過P點(diǎn);已知∠B=∠D=30°,BC=DE,AB=AD=10,∠PAC的平分線與∠ACB的平分線交于O.
(1)∠BAD與∠CAE相等嗎?說(shuō)明其理由;
(2)若AP長(zhǎng)為m,請(qǐng)用含m的代數(shù)式表示線段PD的長(zhǎng),并求PD的最大值;
(3)當(dāng)∠BAC=90°時(shí),α°<∠AOC<β°,那么α= ,β= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2,以D(﹣2,1)為直角頂點(diǎn)作該拋物線的內(nèi)接Rt△ADB(即A.D.B均在拋物線上).直線AB必經(jīng)過一定點(diǎn),則該定點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).
(1)以O為中心作出△ABC的中心對(duì)稱圖形△A1B1C1,并寫出點(diǎn)B1坐標(biāo);
(2)以格點(diǎn)P為旋轉(zhuǎn)中心,將△ABC按順時(shí)針方向旋轉(zhuǎn)90°,得到△A′B′C′,且使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的恰好落在△A1B1C1的內(nèi)部格點(diǎn)上(不含△A1B1C1的邊上),寫出點(diǎn)P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com