【題目】已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),連接DE、BF,P是DE的中點(diǎn),連接AP。將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)。
(1)如圖①,當(dāng)△AEF的頂點(diǎn)E、F恰好分別落在邊AB、AD時(shí),則線段AP與線段BF的位置關(guān)系為 ,數(shù)量關(guān)系為 。
(2)當(dāng)△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到如圖②所示位置時(shí),證明:第(1)問中的結(jié)論仍然成立。
(3)若AB=3,AE=1,則線段AP的取值范圍為 。
【答案】(1)AP⊥BF,(2)見解析;(3)1≤AP≤2
【解析】
(1)根據(jù)直角三角形斜邊中線定理可得 ,即△APD為等腰三角形推出∠DAP=∠EDA,可證△AED≌△ABF可得∠ABF=∠EDA=∠DAP 且 BF=ED由三角形內(nèi)角和可得∠AOF=90°即AP⊥BF由全等可得 即
(2)延長(zhǎng)AP至Q點(diǎn)使得DQ∥AE,PA延長(zhǎng)線交于G點(diǎn),利用P是DE中點(diǎn),構(gòu)造△AEP≌△PDQ可得∠EAP=∠PQD,DQ=AE=FA可得∠QDA=∠FAB可證△FAB≌△QDA 得到∠AFB=∠PQD=∠EAP,AQ=FB由三角形內(nèi)角和可得∠FAG=90°得出AG⊥FB即AP⊥BF由全等可得
(3)由于 即求BF的取值范圍,當(dāng)BF最小時(shí),即F在AB上,此時(shí)BF=2,AP=1
當(dāng)BF最大時(shí),即F在BA延長(zhǎng)線上,此時(shí)BF=4,AP=2可得1≤AP≤2
(1)
根據(jù)直角三角形斜邊中線定理有AP是△AED中線可得 ,即△APD為等腰三角形。
∴∠DAP=∠EDA
又AE=AF,∠BAF=∠DAE=90°,AB=AD
∴△AED≌△ABF
∴∠ABF=∠EDA=∠DAP 且 BF=ED
設(shè)AP與BF相交于點(diǎn)O
∴∠ABF+∠AFB=90°=∠DAP+∠AFB
∴∠AOF=90°即AP⊥BF
∴ 即
故答案為:AP⊥BF,
(2)
延長(zhǎng)AP至Q點(diǎn)使得DQ∥AE,PA延長(zhǎng)線交于G點(diǎn)
∴∠EAP=∠PQD,∠AEP=∠QDP
∵P是DE中點(diǎn),
∴EP=DP
∴△AEP≌△PDQ
則∠EAP=∠PQD,DQ=AE=FA
∠QDA=180°-(∠PAD+∠PQD)
=180°-∠EAD
而∠FAB=180°-∠EAD,則∠QDA=∠FAB
∵AF=DQ,∠QDA=∠FAB ,AB=AD
∴△FAB≌△QDA
∴∠AFB=∠PQD=∠EAP,AQ=FB
而∠EAP+∠FAG=90°
∴∠AFB+∠FAG=90°
∴∠FAG=90°
∴AG⊥FB
即AP⊥BF
又
∴
(3)∵
∴即求BF的取值范圍
BF最小時(shí),即F在AB上,此時(shí)BF=2,AP=1
BF最大時(shí),即F在BA延長(zhǎng)線上,此時(shí)BF=4,AP=2
∴ 1≤AP≤2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AC為對(duì)角線,延長(zhǎng)CD至點(diǎn)E使CE=CA,連接AE。F為AB上一點(diǎn),且BF=DE,連接FC.
(1)若DE=1,CF=2,求CD的長(zhǎng)。
(2)如圖2,點(diǎn)G為線段AE的中點(diǎn),連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測(cè)驗(yàn)成績(jī)?nèi)缦卤硭荆?/span>
測(cè)驗(yàn)類別 | 平時(shí)測(cè)驗(yàn) | 期中測(cè)驗(yàn) | 期末測(cè)驗(yàn) | ||
第1次 | 第2次 | 第3次 | |||
成績(jī) | 100 | 106 | 106 | 105 | 110 |
(1)該同學(xué)上學(xué)期5次測(cè)驗(yàn)成績(jī)的眾數(shù)為 ,中位數(shù)為 ;
(2)該同學(xué)上學(xué)期數(shù)學(xué)平時(shí)成績(jī)的平均數(shù)為 ;
(3)該同學(xué)上學(xué)期的總成績(jī)是將平時(shí)測(cè)驗(yàn)的平均成績(jī)、期中測(cè)驗(yàn)成績(jī)、期末測(cè)驗(yàn)成績(jī)按照2:3:5的比例計(jì)算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評(píng)成績(jī)(結(jié)果保留整數(shù))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生參加植樹造林,甲班每天比乙班多植5棵樹,甲班植80棵樹與乙班植70棵樹所用的天數(shù)相等,求甲、乙兩班每天各植樹多少棵。下面列式錯(cuò)誤的是 ( )
A.設(shè)甲班每天植樹x棵,則B.設(shè)乙班每天植樹x棵,則
C.設(shè)甲班在x天植樹80棵,則D.設(shè)乙班在x天植樹70棵,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣球內(nèi)充滿了一定量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓P(kPa)是氣球體積V(m3)的反比例函數(shù),且當(dāng)V=0.8m3時(shí),P=120kPa。
(1)求P與V之間的函數(shù)表達(dá)式;
(2)當(dāng)氣球內(nèi)的氣壓大于100kPa時(shí),氣球?qū)⒈ǎ瑸榇_保氣球不爆炸,氣球的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)D是等邊三角形ABC外一點(diǎn),且DB=DC,∠BDC=120°,將一個(gè)三角尺60°角的頂點(diǎn)放在點(diǎn)D上,三角尺的兩邊DP,DQ分別與射線AB,CA相交于E,F兩點(diǎn).
(1)當(dāng)EF∥BC時(shí),如圖①所示,求證:EF=BE+CF.
(2)當(dāng)三角尺繞點(diǎn)D旋轉(zhuǎn)到如圖②所示的位置時(shí),線段EF,BE,CF之間的上述數(shù)量關(guān)系是否成立?如果成立,請(qǐng)說明理由;如果不成立,寫出EF,BE,CF之間的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)三角尺繞點(diǎn)D繼續(xù)旋轉(zhuǎn)到如圖③所示的位置時(shí),(1)中的結(jié)論是否發(fā)生變化?如果不變化,直接寫出結(jié)論;如果變化,請(qǐng)直接寫出EF,BE,CF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求圖中半圓的面積.
(2)在直角坐標(biāo)系內(nèi),一次函數(shù)y=kx+b的圖象經(jīng)過三點(diǎn)A(2,0),B(0,2),C(m,3).求這個(gè)一次函數(shù)解析式并求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE,BE分別交于點(diǎn)G、H.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④S△ABC=2S△ADF.其中正確結(jié)論的序號(hào)是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表:
平均數(shù)/分 | 中位數(shù)/分 | 眾數(shù)/分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
(2)結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;
(3)計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com