【題目】如圖,在矩形ABCD中,E為CD的中點,F(xiàn)為BE上的一點,連結(jié)CF并延長交AB于點M,MNCM交射線AD于點N.

(1)當F為BE中點時,求證:AM=CE;

(2)若 =2,求的值;

(3)若=n,當n為何值時,MNBE?

【答案】(1)詳見解析;(2)3;(3)n=4.

【解析】

試題分析:(1)如圖1,易證BMF≌△ECF,則有BM=EC,然后根據(jù)E為CD的中點及AB=DC就可得到AM=EC;(2)如圖2,設(shè)MB=a,易證ECF∽△BMF,根據(jù)相似三角形的性質(zhì)可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易證AMN∽△BCM,根據(jù)相似三角形的性質(zhì)即可得到AN= a,從而可得ND=AD﹣AN=a,就可求出的值;(3)如圖3,設(shè)MB=a,同(2)可得BC=2a,CE=na.由MNBE,MNMC可得EFC=HMC=90°,從而可證到MBC∽△BCE,然后根據(jù)相似三角形的性質(zhì)即可求出n的值.

試題解析:(1)當F為BE中點時,如圖1,

則有BF=EF.

四邊形ABCD是矩形,

AB=DC,ABDC,

∴∠MBF=CEF,BMF=ECF.

BMF和ECF中,

,

∴△BMF≌△ECF,

BM=EC.

E為CD的中點,

EC=DC,

BM=EC=DC=AB,

AM=BM=EC;

(2)如圖2,

設(shè)MB=a,

四邊形ABCD是矩形,

AD=BC,AB=DC,A=ABC=BCD=90°,ABDC,

∴△ECF∽△BMF,

=2,

EC=2a,

AB=CD=2CE=4a,AM=AB﹣MB=3a

=2,

BC=AD=2a

MNMC,

∴∠CMN=90°,

∴∠AMN+BMC=90°.

∵∠A=90°,

∴∠ANM+AMN=90°,

∴∠BMC=ANM,

∴△AMN∽△BCM,

,

,

AN=a,ND=AD﹣AN=2a﹣a=a,

=3;

(3)當=n時,如圖3,

設(shè)MB=a,同(2)可得BC=2a,CE=na.

MNBE,MNMC,

∴∠EFC=HMC=90°,

∴∠FCB+FBC=90°.

∵∠MBC=90°,

∴∠BMC+FCB=90°,

∴∠BMC=FBC.

∵∠MBC=BCE=90°,

∴△MBC∽△BCE,

,

,

n=4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于的方程有增根,則的值為__________

【答案】2

【解析】方程兩邊都乘(x2),得

x+x2=a,即a=2x2.

分式方程的增根是x=2,

∵原方程增根為x=2,

∴把x=2代入整式方程,得a=2,

故答案為:2.

點睛:本題考查了分式方程的增根,增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出a的值.

型】填空
結(jié)束】
17

【題目】反比例函數(shù)y=的圖象經(jīng)過點(1,6)和(m,-3),則m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校有兩個校區(qū):南校和北校,這兩個校區(qū)九年級學生各有300名,為了解這兩個校區(qū)九年級學生的英語單詞掌握情況,進行了抽樣調(diào)查,過程如下:

①收集數(shù)據(jù),從南校和北校兩個校區(qū)的九年級各隨機抽取10名學生,進行英語單詞測試,測試成績(百分制)如下:

南校 92 100 86 89 73 98 54 95 98 85

北校 100 100 94 83 74 86 75 100 73 75

②整理、描述數(shù)據(jù),按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

成績x

人數(shù)

部門

 50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

 南校

 1

 0

1

3

5

 北校

 0

 0

 4

2

4

(說明:成績90分及以上為優(yōu)秀,80~89分分為良好,60~79分為合格,60分以下為不合格)

③分析數(shù)據(jù),對上述數(shù)據(jù)進行分析,分別求出了兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

校區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

方差

南校

87

90.5

    

179.4

北校

86

   

   

121.6

④得出結(jié)論.

結(jié)合上述統(tǒng)計全過程,回答下列問題:

(1)補全③中的表格.

(2)請估計北校九年級學生英語單詞掌握優(yōu)秀的人數(shù).

(3)你認為哪個校區(qū)的九年級學生英語單詞掌握得比較好?說明你的理由.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AB的垂直平分線MNAC于點D,交AB于點E

1)若∠A40°,求∠DBC的度數(shù);

2)若AE6,△CBD的周長為20,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1AB9cm,ACAB,BDAB,ACBD7cm,點P在線段AB上以2cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,它們運動的時間為ts).

1)若點Q的運動速度與點P的運動速度相等,當t1時,ACPBPQ是否全等,請說明理由;

2)在(1)的前提條件下,判斷此時線段PC和線段PQ的位置關(guān)系,并證明;

3)如圖(2),將圖(1)中的ACAB,BDAB為改CAB=∠DBA50°”,其他條件不變.設(shè)點Q的運動速度為xcm/s,是否存在實數(shù)x,使得ACPBPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】依據(jù)國家實行的《國家學生體質(zhì)健康標準》,對懷柔區(qū)初一學生身高進行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學生現(xiàn)存的身高問題,分析其影響因素,為學生的健康發(fā)展及學校體育教育改革提出合理項建議.已知懷柔區(qū)初一學生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機抽取初一學生進行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:

身高情況分組表

組別

身高(cm)

A

150≤x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

170≤x<175

根據(jù)統(tǒng)計圖表提供的信息,下列說法中

①抽取男生的樣本中,身高在155≤x<165之間的學生有18人;

②初一學生中女生的身高的中位數(shù)在B組;

③抽取的樣本中,抽取女生的樣本容量是38;

④初一學生身高在160≤x<170之間的學生約有800人.

其中合理的是(  )

A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解七、八年級學生對防溺水安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;

4)該校七年級學生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年女排世界杯中,中國女排以11站全勝且只丟3局的成績成功衛(wèi)冕本屆世界杯冠軍.某校七年級為了弘揚女排精神,組建了排球社團,通過測量同學們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列問題.

(1)填空:樣本容量為___a=___;

(2)把頻數(shù)分布直方圖補充完整;

(3)若從該組隨機抽取1名學生,估計這名學生身高低于165cm的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,再解決問題.

閱讀:材料一配方法可用來解一元二次方程.例如,對于方程可先配方,然后再利用直接開平方法求解方程.其實,配方還可以用它來解決很多問題.

材料二對于代數(shù)式,因為,所以,即有最小值,且當時,取得最小值為

類似地,對于代數(shù)式,因為,所以,即有最大值,且當時,取得最大值為

解答下列問題:

填空:________時,代數(shù)式有最小值為________;

________時,代數(shù)式有最大值為________

試求代數(shù)式的最小值,并求出代數(shù)式取得最小值時的的值.

(要求寫出必要的運算推理過程)

查看答案和解析>>

同步練習冊答案