【題目】對(duì)于一個(gè)三位正整數(shù)t,將各數(shù)位上的數(shù)字重新排序后(包括本身),得到一個(gè)新的三位數(shù) (a≤c),在所有重新排列的三位數(shù)中,當(dāng)|a+c﹣2b|最小時(shí),稱此時(shí)的 為t的“最優(yōu)組合”,并規(guī)定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后為:142、214、因?yàn)閨1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124為124的“最優(yōu)組合”,此時(shí)F(124)=﹣1.
(1)三位正整數(shù)t中,有一個(gè)數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),求證:F(t)=0
(2)一個(gè)正整數(shù),由N個(gè)數(shù)字組成,若從左向右它的第一位數(shù)能被1整除,它的前兩位數(shù)能被2整除,前三位數(shù)能被3整除,…,一直到前N位數(shù)能被N整除,我們稱這樣的數(shù)為“善雅數(shù)”.例如:123的第一位數(shù)1能披1整除,它的前兩位數(shù)12能被2整除,前三位數(shù)123能被3整除,則123是一個(gè)“善雅數(shù)”.若三位“善雅數(shù)”m=200+10x+y(0≤x≤9,0≤y≤9,x、y為整數(shù)),m的各位數(shù)字之和為一個(gè)完全平方數(shù),求出所有符合條件的“善雅數(shù)”中F(m)的最大值.
【答案】
(1)證明:∵三位正整數(shù)t中,有一個(gè)數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),
∴重新排序后:其中兩個(gè)數(shù)位上數(shù)字的和是一個(gè)數(shù)位上的數(shù)字的2倍,
∴a+c﹣2b=0,即(a﹣b)﹣(b﹣c)=0,
∴F(t)=0;
(2)解:∵m=200+10x+y是“善雅數(shù)”,
∴x為偶數(shù),且2+x+y是3的倍數(shù),
∵x<10,y<10,
∴2+x+y<30,
∵m的各位數(shù)字之和為一個(gè)完全平方數(shù),
∴2+x+y=32=9,
∴當(dāng)x=0時(shí),y=7,
當(dāng)x=2時(shí),y=5,
當(dāng)x=4時(shí),y=3,
當(dāng)x=6時(shí),y=1,
∴所有符合條件的“善雅數(shù)”有:207,225,243,261,
∴所有符合條件的“善雅數(shù)”中F(m)的最大值是)=|2﹣4|﹣|4﹣3|=1.
【解析】(1)由三位正整數(shù)中,有一個(gè)數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),根據(jù)最優(yōu)組合的定義即可求解;
(2)由三位“善雅數(shù)”的定義,可得a為偶數(shù),且2+x+y是3的倍數(shù),且2+x+y<30,又有m的各位數(shù)字之和為一個(gè)完全平方數(shù),可得2+x+y=32=9,繼而求得答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“PM2.5”指數(shù)是空氣中可入肺顆粒物的含量,是空氣質(zhì)量的指標(biāo)之一.下表為A市1﹣12月“PM2.5月平均指數(shù)”(單位:微克/立方米)
PM2.5指數(shù) | 20 | 30 | 40 | 41 | 43 | 50 |
月數(shù) | 2 | 4 | 3 | 1 | 1 | 1 |
(1)求這12個(gè)月“PM2.5月平均指數(shù)”的眾數(shù)、中位數(shù)、平均數(shù);
(2)根據(jù)《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》,宜居城市的標(biāo)準(zhǔn)之一是“PM2.5年平均指數(shù)少于35微克/立方米”,請(qǐng)你判斷A市是否為宜居城市?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,小明用1張邊長(zhǎng)為的正方形,2張邊長(zhǎng)為的正方形,3張邊長(zhǎng)分別為的長(zhǎng)方形紙片拼成一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,它的面積為,于是,我們可以得到等式
請(qǐng)解答下列問(wèn)題:
(1)根據(jù)圖2,寫出一個(gè)代數(shù)恒等式;
(2)利用(1)中所得的結(jié)論,解決下面的問(wèn)題:已知,求的值.
(3)小明又用4張邊長(zhǎng)為的正方形,3張邊長(zhǎng)為的正方形,8張邊長(zhǎng)分別為的長(zhǎng)方形紙片拼出一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形的長(zhǎng)為__________,寬為__________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC=( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,⊙O交BC的中點(diǎn)于D,DE⊥AC于點(diǎn)E,連接AD,則下列結(jié)論正確的個(gè)數(shù)是( )
①AD⊥BC;②∠EDA=∠B;③OA= AC;④DE是⊙O的切線.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,BE平分∠ABC交AD于點(diǎn)E,BD平分∠EBC.
(1)若∠DBC=35°,則∠A的度數(shù)為________;
(2)若∠DBC=α,求∠A的度數(shù)(用含α的代數(shù)式表示);
(3)已知120°<∠ABC<180°,若點(diǎn)F在線段AE上,連接BF,當(dāng)△BFD為直角三角形時(shí),求∠A與∠FBE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校有一塊長(zhǎng)為(5a+b)米,寬為(3a+b)米的長(zhǎng)方形空地,中間是邊長(zhǎng)(a﹣b)米的正方形草坪,其余為活動(dòng)場(chǎng)地,學(xué)校計(jì)劃將活動(dòng)場(chǎng)地(陰影部分)進(jìn)行硬化.
(1)用含a,b的代數(shù)式表示需要硬化的面積并化簡(jiǎn);
(2)當(dāng)a=5,b=2時(shí),求需要硬化的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的菱形ABCD中,∠DAB=60度.連接對(duì)角線AC,以AC為邊作第二個(gè)菱形ACC1D1 , 使∠D1AC=60°;連接AC1 , 再以AC1為邊作第三個(gè)菱形AC1C2D2 , 使∠D2AC1=60°;…,按此規(guī)律所作的第n個(gè)菱形的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完假設(shè)每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量(單位:升)與時(shí)間(單位:分鐘)之間的部分關(guān)系如圖象所示從開始進(jìn)水到把水放完需要多少分鐘.( )
A.20B.24C.18D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com