【題目】若拋物線的頂點坐標(biāo)是,并且拋物線與軸兩交點間的距離為8,試求該拋物線的關(guān)系式,并求出這條拋物線上縱坐標(biāo)為10的點的坐標(biāo)。
【答案】;,
【解析】
已知了拋物線的對稱軸方程和拋物線與x軸兩交點間的距離,可求出拋物線與x軸兩交點的坐標(biāo);然后用待定系數(shù)法求出拋物線的解析式,進(jìn)而可求出拋物線上縱坐標(biāo)為10的點的坐標(biāo).
解:設(shè)該拋物線的關(guān)系式為y=a(x-1)2+16,與x軸的兩個交點的橫坐標(biāo)為x1,x2,且x1<x2
∴對稱軸x==1,且x2-x1=8;
解得:x1=-3,x2=5,
∴拋物線與x軸兩交點為(-3,0),(5,0);
把點(5,0)代入y=a(x-1)2+16,得:16a+16=0,
∴a=-1;
∴該拋物線的關(guān)系式為y=-(x-1)2+16,
即y=-x2+2x+15;
將y=10代入,得:-x2+2x+15=10;
解得x1=,x2=;
∴這條拋物線上縱坐標(biāo)為10的點的坐標(biāo)為,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是( )
A. 1一定不是關(guān)于x的方程x2+bx+a=0的根
B. 0一定不是關(guān)于x的方程x2+bx+a=0的根
C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根
D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形 ABCD 中,對角線 AC、BD 相交于點 O,過點 O 的兩條直線分別交邊 AB、CD、AD、BC 于點 E、F、G、H.
(感知)如圖①,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG= S 正方形 ABCD;
(拓展)如圖②,若四邊形 ABCD 是矩形,且 S 四邊形 AEOG=S 矩形 ABCD,設(shè) AB=a, AD=b,BE=m,求 AG 的長(用含 a、b、m 的代數(shù)式表示);
(探究)如圖③,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形、、、…按如圖所示的方式放置.點、、、…和點、、、…分別在直線和軸上,則點的坐標(biāo)是__________.(為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60 ℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計算的時間為x(min).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達(dá)到60 ℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時,y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點,D點在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點A,經(jīng)過點A的拋物線y=ax2﹣3x+c的對稱軸是x=.
(1)求拋物線的解析式;
(2)平移直線l經(jīng)過原點O,得到直線m,點P是直線m上任意一點,PB⊥x軸于點B,PC⊥y軸于點C,若點E在線段OB上,點F在線段OC的延長線上,連接PE,PF,且PE=3PF.求證:PE⊥PF;
(3)若(2)中的點P坐標(biāo)為(6,2),點E是x軸上的點,點F是y軸上的點,當(dāng)PE⊥PF時,拋物線上是否存在點Q,使四邊形PEQF是矩形?如果存在,請求出點Q的坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機(jī)抽取一張,記錄圖案后放回,重新洗勻后再從中隨機(jī)抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)和反比例函數(shù).
(1)如圖1,若,且函數(shù)、的圖象都經(jīng)過點.
①求,的值;
②直接寫出當(dāng)時的范圍;
(2)如圖2,過點作軸的平行線與函數(shù)的圖象相交于點,與反比例函數(shù)的圖象相交于點.
①若,直線與函數(shù)的圖象相交點.當(dāng)點、、中的一點到另外兩點的距離相等時,求的值;
②過點作軸的平行線與函數(shù)的圖象相交于點.當(dāng)的值取不大于1的任意實數(shù)時,點、間的距離與點、間的距離之和始終是一個定值.求此時的值及定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com