【題目】正方形、、、…按如圖所示的方式放置.點、、、…和點、、、…分別在直線和軸上,則點的坐標是__________.(為正整數(shù))
【答案】
【解析】由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的橫坐標為An+1的橫坐標,縱坐標為An的縱坐標,又An的橫坐標數(shù)列為An=2n-1-1,所以縱坐標為(2n-1),然后就可以求出Bn的坐標為[A(n+1)的橫坐標,An的縱坐標].
由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),
∴Bn的橫坐標為An+1的橫坐標,縱坐標為An的縱坐標,
又An的橫坐標數(shù)列為An=2n-1-1,所以縱坐標為2n-1,
∴Bn的坐標為[A(n+1)的橫坐標,An的縱坐標]=(2n-1,2n-1).
故答案為:(2n-1,2n-1).
科目:初中數(shù)學 來源: 題型:
【題目】銀泰百貨名創(chuàng)優(yōu)品店購進600個鑰匙扣,進價為每個8元,第一周以每個12元的價格售出200個,第二周若按每個12元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售.據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進價,單價降低元銷售,銷售一周后,商店對剩余鑰匙扣清倉處理,以每個6元的價格全部售出.
(1)如果這批鑰匙扣共獲利1050元,那么第二周每個鑰匙扣的銷售價格為多少元?
(2)這次降價活動,1050元是最高利潤嗎?若是,說明理由;若不是,求出最高利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題背景:
我們知道,三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半,如何證明三角形中位線定理呢?
已知:如圖1,在中,分別是的中點.
求證:
問題中既要證明兩條線段所在的直線平行,又要證明其中一條線段的長等于另一線段長的一半.所以可以用“倍長法”將延長一倍:延長到,使得,連接這樣只需證明,且.由于是的中點,容易證明四邊形、四邊形是平行四邊形,證明...
問題解決:
上述材料中“倍長法”體現(xiàn)的數(shù)學思想主要是_____. (填入選項前的字母代號即可)
A.數(shù)形結(jié)合思想 B.轉(zhuǎn)化思想 C.分類討論思想 D.方程思想
證明四邊形是平行四邊形的依據(jù)是
反思交流:
“智慧小組”在證明中位線定理時,在圖1的基礎上追加了如上輔助線作法:如圖3,分別過點作的垂線,垂足分別為,..
請你根據(jù)“智慧小組”添加的輔助線,證明三角形的中位線定理.
方法遷移:
如圖4、四邊形和都是正方形,是的中點.求證:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,CD⊥AB于點D,DA=DC=4,DB=2,AF⊥BC于點F,交DC于點E.
(1)求線段AE的長;
(2)若點G是AC的中點,點M是線段CD上一動點,連結(jié)GM,過點G作GN⊥GM交直線AB于點N,記△CGM的面積為S1,△AGN的面積為S2.在點M的運動過程中,試探究:S1與S2的數(shù)量關系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+3與x軸交于點A,與y軸交于點B,點C與點A關于y軸對稱.
(1)求直線BC的函數(shù)表達式;
(2)設點M是x軸上的一個動點,過點M作y軸的平行線,交直線AB于點P,交直線BC于點Q,連接BM.
①若∠MBC=90°,求點P的坐標;
②若△PQB的面積為,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,點D在直線BC上,E在AC上,且AC=CD,DE=AB.
(1)如圖②,將△ECD沿CB方向平移,使點E落在AB上,得△E1C1D1,求平移的距離;
(2)如圖③,將△ECD繞點C逆時針旋轉(zhuǎn),使點E落在AB上,得△E2CD2,求旋轉(zhuǎn)角∠DCD2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,菱形OABC的OC邊落在x軸上,∠AOC=60°,OA=60.若菱形OABC內(nèi)部(邊界及頂點除外)的一格點P(x,y)滿足:x2﹣y2=90x﹣90y,就稱格點P為“好點”,則菱形OABC內(nèi)部“好點”的個數(shù)為( )
(注:所謂“格點”,是指在平面直角坐標系中橫、縱坐標均為整數(shù)的點.)
A. 145 B. 146 C. 147 D. 148
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com