【題目】正方形、、…按如圖所示的方式放置.、、、…和點、、…分別在直線軸上,則點的坐標是__________.(為正整數(shù))

【答案】

【解析】由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的橫坐標為An+1的橫坐標,縱坐標為An的縱坐標,又An的橫坐標數(shù)列為An=2n-1-1,所以縱坐標為(2n-1),然后就可以求出Bn的坐標為[A(n+1)的橫坐標,An的縱坐標].

由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),

Bn的橫坐標為An+1的橫坐標,縱坐標為An的縱坐標,

An的橫坐標數(shù)列為An=2n-1-1,所以縱坐標為2n-1,

Bn的坐標為[A(n+1)的橫坐標,An的縱坐標]=(2n-1,2n-1).

故答案為:(2n-1,2n-1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】銀泰百貨名創(chuàng)優(yōu)品店購進600個鑰匙扣,進價為每個8元,第一周以每個12元的價格售出200個,第二周若按每個12元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售.據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進價,單價降低元銷售,銷售一周后,商店對剩余鑰匙扣清倉處理,以每個6元的價格全部售出.

1)如果這批鑰匙扣共獲利1050元,那么第二周每個鑰匙扣的銷售價格為多少元?

2)這次降價活動,1050元是最高利潤嗎?若是,說明理由;若不是,求出最高利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題背景:

我們知道,三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半,如何證明三角形中位線定理呢?

已知:如圖1,在中,分別是的中點.

求證:

問題中既要證明兩條線段所在的直線平行,又要證明其中一條線段的長等于另一線段長的一半.所以可以用“倍長法”將延長一倍:延長,使得,連接這樣只需證明,且.由于的中點,容易證明四邊形、四邊形是平行四邊形,證明...

問題解決:

上述材料中“倍長法”體現(xiàn)的數(shù)學思想主要是_____ (填入選項前的字母代號即可)

A.數(shù)形結(jié)合思想 B.轉(zhuǎn)化思想 C.分類討論思想 D.方程思想

證明四邊形是平行四邊形的依據(jù)是

反思交流:

“智慧小組”在證明中位線定理時,在圖1的基礎上追加了如上輔助線作法:如圖3,分別過點的垂線,垂足分別為,..

請你根據(jù)“智慧小組”添加的輔助線,證明三角形的中位線定理.

方法遷移:

如圖4、四邊形都是正方形,的中點.求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:

(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;

(2)連接AD、CD,求D的半徑及扇形DAC的圓心角度數(shù);

(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,CDAB于點D,DA=DC=4,DB=2,AFBC于點F,交DC于點E

1)求線段AE的長;

2)若點GAC的中點,點M是線段CD上一動點,連結(jié)GM,過點GGNGM交直線AB于點N,記CGM的面積為S1,AGN的面積為S2.在點M的運動過程中,試探究:S1S2的數(shù)量關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx+3x軸交于點A,與y軸交于點B,點C與點A關于y軸對稱.

1)求直線BC的函數(shù)表達式;

2)設點Mx軸上的一個動點,過點My軸的平行線,交直線AB于點P,交直線BC于點Q,連接BM

①若∠MBC90°,求點P的坐標;

②若△PQB的面積為,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)說明:DCAB;

(2)求∠PFH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB4,點D在直線BC上,EAC上,且ACCD,DEAB

1)如圖,將△ECD沿CB方向平移,使點E落在AB上,得△E1C1D1,求平移的距離;

2)如圖,將△ECD繞點C逆時針旋轉(zhuǎn),使點E落在AB上,得△E2CD2,求旋轉(zhuǎn)角∠DCD2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,菱形OABCOC邊落在x軸上,AOC=60°,OA=60.若菱形OABC內(nèi)部(邊界及頂點除外)的一格點Pxy)滿足:x2y2=90x90y,就稱格點P好點,則菱形OABC內(nèi)部好點的個數(shù)為(  )

(注:所謂格點,是指在平面直角坐標系中橫、縱坐標均為整數(shù)的點.)

A. 145 B. 146 C. 147 D. 148

查看答案和解析>>

同步練習冊答案