【題目】如圖,在中,,,邊上的中線,點為線段上一點(不與點、點重合),連接,作的延長線交于點,與交于點,連接

1)求證:;

2)求的度數(shù);

3)求的值.

【答案】1)證明見解析;(23

【解析】

(1)得出∠FCG=BEG=90°,∠CGF=EGB,則結(jié)論得證;

(2)證明△CGE∽△FGB,得出∠EFB=ECG=ACB=45°;

(3)過點FFHCDDC的延長線于點H,證明△FEH≌△EBDAAS),得出FH=ED,則CH=FH,得出CF=DE,則得出答案.

(1)證明:∵,

又∵

(2)解:由(1)

,∴

又∵

(3)解:過點的延長線于點,如下圖所示,

(2)知,是等腰直角三角形,

AAS),∴,

,∴,∴

中,,∴,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,,三點.

1)求拋物線的解析式;

2)在拋物線的對稱軸上有一點,使的值最小,求點的坐標(biāo);

3)點軸上一動點,在拋物線上是否存在一點,使以,,,四點構(gòu)成的四邊形為平行四邊形?若存在,求點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,QAP的中點,已知OQ長的最大值為,則k的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高學(xué)生身體素質(zhì),某校決定開展足球、籃球、排球、兵乓球等四項課外體育活動,要求全員參與,并且每名學(xué)生只能選擇其中一項.為了解選擇各種體育活動項目的學(xué)生人數(shù),該校隨機抽取了部分學(xué)生進行調(diào)查,并繪制出如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)直接寫出這次抽樣調(diào)查的學(xué)生人數(shù);

2)補全條形統(tǒng)計圖;

3)若該學(xué)??cè)藬?shù)是1500人,請估計選擇籃球項目的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,,點,分別是邊上的動點,且,點關(guān)于的對稱點恰好落在的內(nèi)角平分線上,則長為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊和等邊中,過延長線于點

1)如圖,求證:四邊形為菱形;

2)如圖,過于點,連接,不添加任何輔助線,直接寫出與相等的所有角(不包括).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋里裝有個白球,個黑球和若干個紅球,它們除顏色外其余都相同,從中任意摸出個球,是白球的概率為

1)布袋里紅球的個數(shù)_______;

2)小亮和小麗將布袋中的白球取出個,利用剩下的球進行摸球游戲,他們約定:先摸出個球后不放回,再摸出個球,若兩個球中有紅球則小亮勝,否則小麗勝,你認為這個游戲公平嗎?請用列表或畫樹狀圖說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七、八年級各有300名學(xué)生,近期對他們“2020年新型冠狀病毒”防治知識進行了線上測試,為了了解他們的掌握情況,從七、八年級各隨機抽取了50名學(xué)生的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析.下面給出了部分信息:

a.七年級的頻數(shù)分布直方圖如下(數(shù)據(jù)分為5組:50x60,60x7070x80,80x90,90x100):

b.七年級學(xué)生成績在80x90的這一組是:

80 80.5 81 82 82 83 83.5 84

84 85 86 86.5 87 88 89 89

c.七、八年級學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)如下:

年級

平均數(shù)

中位數(shù)

眾數(shù)

七年級

85.3

m

90

八年級

87.2

85

91

根據(jù)以上信息,回答下列問題:

1)表中m的值為 ;

2)在隨機抽樣的學(xué)生中,防治知識成績?yōu)?/span>84分的學(xué)生,在 年級排名更靠前,理由是 ;

3)若各年級防治知識的前90名將參加線上防治知識競賽,預(yù)估七年級分數(shù)至少達到 分的學(xué)生才能入選;

4)若85分及以上為“優(yōu)秀”,請估計七年級達到“優(yōu)秀”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點A,將點A向右平移2個單位長度,得到點B,點B在拋物線上.

1)求點B的坐標(biāo)(用含的式子表示);

2)求拋物線的對稱軸;

3)已知點.若拋物線與線段PQ恰有一個公共點,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案