【題目】在△ABC中,AB=AC,D是線段BC的延長(zhǎng)線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.
(1)如圖1,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng),若∠BAC=30°,則∠DCE= .
(2)設(shè)∠BAC=α,∠DCE=β:
①如圖1,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
【答案】(1)30°;(2)①α=β,理由見解析;②當(dāng)D在線段BC上時(shí),α+β=180°,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線或反向延長(zhǎng)線上時(shí),α=β.
【解析】試題分析:(1)證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可;
(2)①證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可;
②α+β=180°或α=β,根據(jù)三角形外角性質(zhì)求出即可.
試題解析:(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.
在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),
∴∠B=∠ACE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.
∵∠BAC=30°,∴∠DCE=30°.
故答案為:30°;
(2)解:當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),α與β之間的數(shù)量關(guān)系是α=β.理由是:
∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.
在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),
∴∠B=∠ACE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.
∵∠BAC=α,∠DCE=β,∴α=β;
(3)解:當(dāng)D在線段BC上時(shí),α+β=180°,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線或反向延長(zhǎng)線上時(shí),α=β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某國(guó)發(fā)生8.1級(jí)強(qiáng)烈地震,我國(guó)積極組織搶險(xiǎn)隊(duì)赴地震災(zāi)區(qū)參與搶險(xiǎn)工作,如圖,某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米,參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
①;
② ;
③ 17-8÷(-2)+4×(—5) ;
④;
⑤ (﹣2)2×7﹣(﹣3)×6﹣|﹣5|;
⑥ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)求值:
(1).先化簡(jiǎn),再求值:3a2+(4a2-2a-1)-2(3a2-a+1),其中a1
(2). A=3a2+6ab-b2,B=2b2-5ab+a2,C=-4a2-ab+b2,先化簡(jiǎn),再求值:A-[B-(A-B+3C)]-(A-B),其中 a=-0.2,b=-0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】早晨,小明步行到離家900米的學(xué)校去上學(xué),到學(xué)校時(shí)發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學(xué)校.已知小明步行從學(xué)校到家所用的時(shí)間比他騎自行車從家到學(xué)校所用的時(shí)間多10分鐘,小明騎自行車速度是步行速度的3倍.
(1)求小明步行速度(單位:米/分)是多少;
(2)下午放學(xué)后,小明騎自行車回到家,然后步行去圖書館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書館的時(shí)間不超過騎自行車從學(xué)校到家時(shí)間的2倍,那么小明家與圖書館之間的路程最多是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,中線BE,CD相交于點(diǎn)O,連接DE,則下列判斷錯(cuò)誤的是( )
A.DE是△ABC的中位線
B.點(diǎn)O是△ABC的重心
C.△DEO∽△CBO
D.=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ΔABC在坐標(biāo)平面內(nèi)的頂點(diǎn)C(2,0),∠ACB=90°,∠B=30°,AB=6,∠BCD=45°。①求A、B的坐標(biāo);②求AB中點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(﹣ ,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是(填入正確結(jié)論的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com