【題目】中國是世界上13個貧水國家之一.某校有800名在校學生,學校為鼓勵學生節(jié)約用水,展開“珍惜水資源,節(jié)約每一滴水”系列教育活動,為響應(yīng)學校號召,數(shù)學小組做了如下調(diào)查

小亮為了解一個擰不緊的水龍頭的滴水情況,記錄了滴水時間和燒杯中的水面高度,如圖1.小明設(shè)計了調(diào)查問卷,在學校隨機抽取一部分學生進行了問卷調(diào)查,并制作出統(tǒng)計圖.如圖2和圖3.結(jié)合圖2和圖3回答下列問題

(1)參加問卷調(diào)查的學生人數(shù)為 60 人,其中選C的人數(shù)占調(diào)查人數(shù)的百分比為

(2)在這所學校中選“比較注意,偶爾水龍頭滴水”的大概有 人.若在該校隨機抽取一名學生,這名學生選B的概率為

請結(jié)合圖1解答下列問題:

(3)在“水龍頭滴水情況”圖中,水龍頭滴水量(毫升)與時間(分)可以用我們學過的哪種函數(shù)表示?請求出函數(shù)關(guān)系式

【答案】(1) 10% ;(2) 440;(3) y=6t.

【解析】

試題分析:(1)根據(jù)A的人數(shù)除以占的百分比求出調(diào)查總?cè)藬?shù);求出C占的百分比即可;

(2)求出B占的百分比,乘以800得到結(jié)果;找出總?cè)藬?shù)中B的人數(shù),即可求出所求概率;

(3)水龍頭滴水量(毫升)與時間(分)可以近似看做一次函數(shù),設(shè)為y=kx+b,把兩點坐標代入求出k與b的值,即可確定出函數(shù)解析式.

試題解析:(1)根據(jù)題意得:21÷35%=60(人),選C的人數(shù)占調(diào)查人數(shù)的百分比為×100%=10%.

故答案為:60,10%;

(2)根據(jù)題意得:選“比較注意,偶爾水龍頭滴水”的大概有800×(1﹣35%﹣10%)=440(人);

若在該校隨機抽取一名學生,這名學生選B的概率為=.

故答案為:440;;

(3)水龍頭滴水量(毫升)與時間(分)可以近似地用一次函數(shù)表示,

設(shè)水龍頭滴水量y(毫升)與時間t(分)滿足關(guān)系式y(tǒng)=kt+b,

依題意得:,

解得:,

y=6t,

經(jīng)檢驗其余各點也在函數(shù)圖象上,

水龍頭滴水量y(毫升)與時間t(分)滿足關(guān)系式為y=6t.

故答案為:y=6t.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一個n邊形的內(nèi)角和為1080°,則n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解正確的是(  )

A. m3+m2+m=m(m2+m) B. x3﹣x=x(x2﹣1)

C. (a+b)(a﹣b)=a2﹣b2 D. ﹣4a2+9b2=(﹣2a+3b)(2a+3b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB為O的直徑,點P是O上不與A,B重合的一個動點,延長PA到C,使AC=AP,點D為O上一點,且滿足ADPB,射線CD交PB延長線于點E.

(1)求證:PAB≌△ACD;

(2)填空:

若AB=6,則四邊形ABED的最大面積為 ;

若射線CD與O的另一個交點為F,則當PAB的度數(shù)為 時,以O(shè),A,D,F(xiàn)為頂點的四邊形為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校男子籃球隊10名隊員進行定點投籃練習,每人投籃10次,他們投中的次數(shù)統(tǒng)計如表:

投中次數(shù)

3

5

6

7

8

人數(shù)

1

3

2

2

2

則這些隊員投中次數(shù)的眾數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國第一汽車集團公司2015年營業(yè)額高達68000億,把數(shù)據(jù)68000用科學記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點、、、依次在同一條直線上, 于點, 于點,且 .

1)求證: ;

2)連結(jié)、,求證: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在平面直角從標系中,A點坐標為(0,4),B點坐標為(2,0),C(m,6)為反比例函數(shù)y=圖象上一點.將AOB繞B點旋轉(zhuǎn)至A′O′B處.

(1)求m的值;

(2)若O′落在OC上,連接AA′交OC與D點.求證:四邊形ACA′O′為平行四邊形; 求CD的長度;

(3)直接寫出當AO′最短和最長時A′點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學實驗課上,李靜同學剪了兩張直角三角形紙片,進行如下的操作:

操作一:如圖1,將RtABC紙片沿某條直線折疊,使斜邊兩個端點AB重合,折痕為DE

(1)如果AC=5cm,BC=7cm,可得ACD的周長為 ;

(2)如果∠CADBAD=1:2,可得∠B的度數(shù)為 ;

操作二:如圖2,李靜拿出另一張RtABC紙片,將直角邊AC沿直線CD折疊,使點A與點E重合,若AB=10cm,BC=8cm,請求出BE的長.

查看答案和解析>>

同步練習冊答案