【題目】如圖是某同學(xué)對一道作業(yè)題的解題思路,課堂上師生據(jù)此展開了討論.問題如圖,已知A(1,)、B(4,0),∠OAB的平分線AC交x軸于點C,求OC的長.思路:作AD⊥OB,CE⊥AB,CF⊥OA
①A坐標→OD=1,AD=,OA=2→∠AOC=60°;
②A、B坐標→OA=2,OB=4,AB=2→∠OAB=90°;
③AC平分∠OAB→CE=CF;
④S△AOC+S△ABC=S△AOB→AOCF+ABCE=OAAB→CF=3﹣;
⑤綜上,Rt△OCF中,OC=﹣2.可以優(yōu)化嗎?
(1)同學(xué)們發(fā)現(xiàn)不需要證“∠OAB=90°”也能求解,簡要說明理由.幾位同學(xué)提出了不同的思路
①甲說:S△AOC和S△ABC的面積之比既是,又是,從而;
②乙說:在AB邊上取點G,使AG=AO,連接CG,可知BG的長即為所求;
③丙說:延長AC交△AOB的外接圓于N,再利用一次函數(shù)或相似求出OC.
請你選擇其中一種解法,利用圖2和已有步驟完成解答.有什么收獲?
(2)面積法是圖形問題中確定數(shù)量關(guān)系的有效方法,請利用面積法求解:如圖1,⊙O與△ABC的邊AC,邊BA、BC的延長線AE、CF相切,切點分別為D、E、F.設(shè)△ABC的面積為S,BC=a,AC=b,AB=c,請用含S、a、b、c的式子表示⊙O的半徑R,直接寫出結(jié)果.
【答案】(1)方法可以優(yōu)化.見解析。本題收獲:學(xué)會了利用面積法解決問題,學(xué)會構(gòu)建一次函數(shù),利用數(shù)形結(jié)合的思想解決問題.
(2)R=.
【解析】
(1)根據(jù)甲、乙、丙的三種思路解決問題即可;
(2)根據(jù)S△ABC=S△AOB+S△OBC﹣S△AOC,利用面積法解決問題即可.
解:(1)方法可以優(yōu)化.
方法一:如圖2﹣1中,作CE⊥OA于E,CF⊥AB于F.
∵CA平分∠OAB,CE⊥OA,CF⊥AB,
∴CE=CF,
∵= ==,
∴OC=OB=2﹣2.
方法二:如圖2﹣2中,在AB邊上取點G,使AG=AO,連接CG.
∵AO=AG,∠OAC=∠CAG,AC=AC,
∴△ACO≌△ACG(SAS),
∴OC=CG,
∵∠AOC=∠AGC=60°,∠ABO=30°,∠AGC=∠GCB+∠ABO,
∴∠GCB=∠GBC,
∴GC=GB,
∴OC=GB=2﹣2.
方法三:如圖2﹣3中,延長AC交△ABC的外接圓于點N,連接ON,BN.
易知N(2,﹣2),
∵A(1,),
∴直線AN的解析式為y=(﹣2﹣)x+2+2,
令y=0,得到x=2﹣2,
∴C(2﹣2),
∴OC=2﹣2.
本題收獲:學(xué)會了利用面積法解決問題,學(xué)會構(gòu)建一次函數(shù),利用數(shù)形結(jié)合的思想解決問題.
(2)如圖1中,連接OB,OE,OD,OF.
∵⊙O與△ABC的邊AC,邊BA、BC的延長線AE、CF相切,切點分別為D、E、F,
∴OE⊥AB,OD⊥AC,OF⊥BC,
∵S△ABC=S△AOB+S△OBC﹣S△AOC,
∴S=cR+aR﹣bR,
∴R= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1,A2在射線OA上,B1在射線OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,…. 若和的面積分別為1、9,則的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a( x+1 )2-4a(a<0)與x軸交于點A、B(A在B的左側(cè)),與y軸交于點C,CD∥x軸交拋物線于點D,連接BD交拋物線的對稱軸于點E,連接BC、CE.
(1)拋物線頂點坐標為 (用含a的代數(shù)式表示),A點坐標為 ,
(2)當△DCE的面積為時,求a的值;
(3)當△BCE為直角三角形時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都學(xué)習(xí)過《幾何》課本第三冊第199頁的第11題,它是這樣的:如圖,A為⊙O的直徑EF上的一點,OB是和這條直徑垂直的半徑,BA和⊙O相交于另一點C,過點C的切線和EF的延長線相交于點D,求證:DA=DC.
(1)現(xiàn)將圖1中的直徑EF所在直線進行平行移動到圖2所示的位置,此時OB與EF垂直相交于H,其它條件不變.
①求證:DA=DC;
②當DF:EF=1:8,且DF=時,求ABAC的值.
(2)將圖2中的EF所在直線繼續(xù)向上平行移動到圖3所示的位置,使EF與OB的延長線垂直相交于H,A為EF上異于H的一點,且AH小于⊙O的切線交EF于D,試猜想:DA=DC是否仍然成立?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=kx+b(k≠0)與拋物線y=ax2﹣4ax+3a的對稱軸交于點A(m,﹣1),點A關(guān)于x軸的對稱點恰為拋物線的頂點.
(1)求拋物線的對稱軸及a的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記直線y=kx+b(k≠0)與拋物線圍成的封閉區(qū)域(不含邊界)為W.
①當k=1時,直接寫出區(qū)域W內(nèi)的整點個數(shù);
②若區(qū)域W內(nèi)恰有3個整點,結(jié)合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點,點B在對稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠C=72°,△ABC繞點B逆時針旋轉(zhuǎn),當點C的對應(yīng)點C1落在邊AC上時,設(shè)AC的對應(yīng)邊A1C1與AB的交點為E,則∠BEC1=___°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個函數(shù)圖象交點的橫坐標.若關(guān)于x的方程x2+a﹣=0(a>0)只有一個整數(shù)解,則a的值等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com