【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學(xué)生保持軀體自然姿勢(shì).根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計(jì)圖如圖1,AB可繞點(diǎn)A旋轉(zhuǎn),在點(diǎn)C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC30 cm.

(1)如圖2,當(dāng)∠BAC24°時(shí),CDAB,求支撐臂CD的長(zhǎng);

(2)如圖3,當(dāng)∠BAC12°時(shí),求AD的長(zhǎng).(結(jié)果保留根號(hào))

(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46sin 12°≈0.20)

【答案】解:(1)在Rt△ADC中,AC30,∠DAC24°sin∠DAC,

∴DCAC·sin∠DAC ≈30×0.4012…………………………3

答:支撐臂DC的長(zhǎng)為12 cm

2)本題分兩種情況,

過(guò)點(diǎn)CCE⊥AB,垂足為E

Rt△ACE中,AC30,∠EAC12°,sin∠EAC,

∴CEAC·sin∠EAC ≈30×0.206…………………………4

【解析】

1Rt△ADC中,AC=30,∠DAC=24°,Sin∠DAC=

DC=AC·SinDAC=30×0.40=12

答:支撐臂CD的長(zhǎng)為12. …………………………………2

2)本題分兩種情況。

過(guò)CCEAB,垂足為E.

RtACE中,AC="30," EAC=12°,SinEAC=

CE=AC·SinEAC=30×0.20=6

AE=

RtEDC中,DC=12,CE=6,

DE=………………………4

AD=12±…………………………………………………………6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,是一種折疊椅,忽略其支架等的寬度,得到它的側(cè)面簡(jiǎn)化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示.若坐板CD平行于地面,前支撐架AB與后支撐架OF分別與CD交于點(diǎn)E,D,ED=25cm,OD=20cm,DF=40cm,ODC=60°,AED=50°.

(1)求兩支架著地點(diǎn)B,F(xiàn)之間的距離;

(2)若A、D兩點(diǎn)所在的直線正好與地面垂直,求椅子的高度.

(結(jié)果取整數(shù),參數(shù)數(shù)據(jù):sin60°=0.87,cos60°=0.5,tan60°=1.73,sin50°=0.77,cos50°=0.64,tan50°=1.19)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣(mài)出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣(mài)出20件.在確保盈利的前提下,解答下列問(wèn)題:

(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖為水平放置于桌面上的臺(tái)燈的示意圖,已知燈臂AB=18cm,燈罩BC=30cm,BAM60°,ABC=90°,求點(diǎn)C到桌面的距離CD(精確到0.1cm).參考數(shù)據(jù):≈1.41,≈1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點(diǎn)上方2米處加固另一條鋼線ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線ED的長(zhǎng)度約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)化簡(jiǎn);

(2)如圖,已知△ABC,按如下步驟作圖:

①分別以AC為圓心,大于AC的長(zhǎng)為半徑畫(huà)弧,兩弧交于P, Q兩點(diǎn);

②作直線PQ,分別交ABAC于點(diǎn)E,D;

③過(guò)CCFABPQ于點(diǎn)F

求證:△AED≌△CFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點(diǎn)分別為MN ,與x軸分別相交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)和C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),

(1))函數(shù)的頂點(diǎn)坐標(biāo)為 ;當(dāng)二次函數(shù)L1 ,L2 值同時(shí)隨著的增大而增大時(shí),的取值范圍是

(2)當(dāng)AD=MN時(shí),求的值,并判斷四邊形AMDN的形狀(直接寫(xiě)出,不必證明);

(3)當(dāng)B,C是線段AD的三等分點(diǎn)時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將DE繞點(diǎn)D按逆時(shí)針旋轉(zhuǎn)90°,得到DF,連接AF,則AF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到平行四邊形ABOC.拋物線y=﹣x2+2x+3經(jīng)過(guò)點(diǎn)A、CA三點(diǎn).

1)求A、AC三點(diǎn)的坐標(biāo);

2)求平行四邊形ABOC和平行四邊形ABOC重疊部分COD的面積;

3)點(diǎn)M是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問(wèn)點(diǎn)M在何處時(shí),AMA的面積最大?最大面積是多少?并寫(xiě)出此時(shí)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案