【題目】(思考)

如果x1x2是一元二次方程ax2+bx+c0的兩根,那么有x1+x2=﹣,x1x2,這是一元二次方程根與系數(shù)的關(guān)系,我們可以利用它來解決問題

(應(yīng)用)

1)若x1,x2是方程x2+x10的兩根,則x1+x2   x1x2   ,求的值.

2)關(guān)于x的一元二次方程kx2+k3x+0有兩個不相等的實數(shù)根為x1,x2,且滿足x1x22x1+x2+42k,請考慮k的取值范圍前提下,求出k的值

【答案】(1)1;(2)1.

【解析】

1)根據(jù)題意給出的方法即可求出答案;

2)根據(jù)以及x1x22x1+x2+42k,可列出方程求出k的值.

1)由題意可知:x1+x2=﹣1,x1x2=﹣1

∴原式=1;

2)由題意可可知:=(k324k×=﹣6k+90

k,

,

x1x22x1+x2+42k,

+2×+42k

k1k3,

3,

k1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,

1)作ABBC的垂直平分線交于點(diǎn)O

2)以點(diǎn)O為圓心,OA長為半徑作圓;

3)⊙O分別與ABBC的垂直平分線交于點(diǎn)M,N;

4)連接AM,ANCM,其中ANCM交于點(diǎn)P.

根據(jù)以上作圖過程及所作圖形,下列四個結(jié)論中,

; ;

③點(diǎn)O的外心 ④點(diǎn)P的內(nèi)心.

所有正確結(jié)論的序號是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+c的對稱軸為x=﹣1,且過點(diǎn)(﹣3,0),(0,﹣3).

1)求拋物線的表達(dá)式.

2)已知點(diǎn)(mk)和點(diǎn)(n,k)在此拋物線上,其中mn,請判斷關(guān)于t的方程t2+mt+n0是否有實數(shù)根,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BDAC,垂足為E,點(diǎn)FBD的延長線上,且DF=DC,連接AF、CF.

(1)求證:∠BAC=2DAC

(2)AF10,BC4,求tanBAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

某生態(tài)示范園要對1號、2號、3號、4號四個新品種共500株果樹幼苗進(jìn)行成活實驗,從中選出成活率高的品種進(jìn)行推廣.通過實驗得知:3號果樹幼苗成活率為89.6%,把實驗數(shù)據(jù)繪制成下列兩幅統(tǒng)計圖(部分信息未給出).

1)實驗所用的2號果樹幼苗的數(shù)量是_______;

2)求出3號果樹幼苗的成活數(shù),并把圖2的統(tǒng)計圖補(bǔ)充完整;

3)你認(rèn)為應(yīng)選哪一種果樹幼苗進(jìn)行推廣?請通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座。

1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 與x軸、y軸分別交于AR兩點(diǎn),直線x軸、y軸分別交于C兩點(diǎn),且

1)如圖,為直線上一點(diǎn),橫坐標(biāo)為,為直線上一動點(diǎn),當(dāng)最小時,將線段沿射線方向平移,平移后的對應(yīng)點(diǎn)分別為,當(dāng)最小時,求點(diǎn)的坐標(biāo);

2)如圖,將沿著軸翻折,得到,再將繞著點(diǎn)順時針旋轉(zhuǎn))得到,直線與直線軸分別交于點(diǎn)、.當(dāng)為等腰三角形時,請直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,∠ABC=30°,BC=2.將ABC繞點(diǎn)C逆時針旋轉(zhuǎn)α角后得到A′B′C,當(dāng)點(diǎn)A的對應(yīng)點(diǎn)A'落在AB邊上時,旋轉(zhuǎn)角α的度數(shù)是_____度,陰影部分的面積為_____

查看答案和解析>>

同步練習(xí)冊答案