【題目】
某生態(tài)示范園要對1號、2號、3號、4號四個新品種共500株果樹幼苗進(jìn)行成活實(shí)驗(yàn),從中選出成活率高的品種進(jìn)行推廣.通過實(shí)驗(yàn)得知:3號果樹幼苗成活率為89.6%,把實(shí)驗(yàn)數(shù)據(jù)繪制成下列兩幅統(tǒng)計(jì)圖(部分信息未給出).
(1)實(shí)驗(yàn)所用的2號果樹幼苗的數(shù)量是_______株;
(2)求出3號果樹幼苗的成活數(shù),并把圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)你認(rèn)為應(yīng)選哪一種果樹幼苗進(jìn)行推廣?請通過計(jì)算說明理由.
【答案】(1)100;(2)112,補(bǔ)圖見解析(3)應(yīng)選擇4號蘋果幼苗進(jìn)行推廣.
【解析】
(1)由2號果樹幼苗占全部果樹幼苗的百分率即可求得2號果樹幼苗的數(shù)量;
(2)先由3號果樹幼苗占全部果樹幼苗的百分率即可求得3號果樹幼苗的數(shù)量,再根據(jù)3號果樹幼苗的成活率即可求得3號果樹幼苗的成活數(shù);
(3)分別求得4種果樹幼苗成活率,比較大小后就可得到應(yīng)選哪一種果樹幼苗進(jìn)行推廣.
(1)500×(1-25%×2-30%)=100(株);
(2),如圖所示;
(3)1號果樹幼苗成活率為
2號果樹幼苗成活率為
4號果樹幼苗成活率為
∵,
∴應(yīng)選擇4號蘋果幼苗進(jìn)行推廣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)的圖象與性質(zhì).
小娜根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小娜的探究過程,請補(bǔ)充完整:
(1)下表是x與y的幾組對應(yīng)值.
x | … | 0 | 2 | 3 | … | ||||
y | … | 0 | m | n | 3 | … |
請直接寫出:m= ,n= ;
(2)如圖,小娜在平面直角坐標(biāo)系xOy中,描出了上表中已經(jīng)給出的各組對應(yīng)值為坐標(biāo)的點(diǎn),請?jiān)倜璩鍪O碌膬蓚點(diǎn),并畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:若方程有三個不同的解,記為x1, x2, x3,且x1< x2<x3. 請直接寫出x1+ x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,對角線,相交于點(diǎn),點(diǎn),分別從,兩點(diǎn)同時出發(fā),以的速度沿,運(yùn)動,到點(diǎn),時停止運(yùn)動,設(shè)運(yùn)動時間為,的面積為,則與的函數(shù)關(guān)系可用圖象表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民的交通消費(fèi)可分為交通工具、交通工具使用燃料、交通工具維修、市內(nèi)公共交通、城市間交通五項(xiàng).該市統(tǒng)計(jì)局根據(jù)當(dāng)年各項(xiàng)的權(quán)重及各項(xiàng)價格的漲幅,計(jì)算當(dāng)年居民交通消費(fèi)價格的平均漲幅.2017年該市的有關(guān)數(shù)據(jù)如下表所示.
交通工具 | 交通工具使用燃料 | 交通工具維修 | 市內(nèi)公共交通 | 城市間交通 | |
占交通消費(fèi)的比例 | 22% | 13% | 5% | P | 26% |
相對上一年價格的漲幅 | 1.5% | m% | 2% | 0.5% | 1% |
(1)求p的值;
(2)若2017年該市的居民交通消費(fèi)相對上一年價格的平均漲幅為1.25%,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(思考)
如果x1,x2是一元二次方程ax2+bx+c=0的兩根,那么有x1+x2=﹣,x1x2=,這是一元二次方程根與系數(shù)的關(guān)系,我們可以利用它來解決問題
(應(yīng)用)
(1)若x1,x2是方程x2+x﹣1=0的兩根,則x1+x2= x1x2= ,求的值.
(2)關(guān)于x的一元二次方程kx2+(k﹣3)x+=0有兩個不相等的實(shí)數(shù)根為x1,x2,且滿足x1x2﹣2(x1+x2)+4=2k﹣,請考慮k的取值范圍前提下,求出k的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2020的直角頂點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,BD平分∠ABC,過D作DE⊥BD交AB于點(diǎn)E,經(jīng)過B,D,E三點(diǎn)作⊙O.
(1)求證:AC與⊙O相切于D點(diǎn);
(2)若AD=15,AE=9,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-2(k-1)x+k2 =0有兩個實(shí)數(shù)根x1.x2.
(1)求實(shí) 數(shù)k的取值范圍;
(2)若(x1+1)(x2+1)=2,試求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2﹣mx+m+1(m為常數(shù)).若這個二次函數(shù)的圖象與x軸只有一個公共點(diǎn)A,且A點(diǎn)在x軸的正半軸上.
(1)求m的值.
(2)四邊形AOBC是正方形,且點(diǎn)B在y軸的負(fù)半軸上,現(xiàn)將這個二次函數(shù)的圖象平移,使平移后的函數(shù)圖象恰好經(jīng)過B,C兩點(diǎn),求平移后的圖象對應(yīng)的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com