【題目】在創(chuàng)客教育理念的指引下,國內很多學校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,某校開設了“3D”打印、數學編程、智能機器人、陶藝制作“四門創(chuàng)客課程記為A、B、C、D,為了解學生對這四門創(chuàng)客課程的喜愛情況,數學興趣小組對全校學生進行了隨機問卷調查,將調查結果整理后繪制成兩幅均不完整的統(tǒng)計圖表:
創(chuàng)客課程 | 頻數 | 頻率 |
“3D”打印 | 36 | 0.45 |
數學編程 | 0.25 | |
智能機器人 | 16 | b |
陶藝制作 | 8 | |
合計 | a | 1 |
請根據圖表中提供的信息回答下列問題:
(1)統(tǒng)計表中的a=______,b=______;
(2)“陶藝制作”對應扇形的圓心角為______;
(3)根據調查結果,請你估計該校300名學生中最喜歡“智能機器人”創(chuàng)客課程的人數;
(4)學校為開設這四門課程,預計每生A、B、C、D四科投資比為4:3:6:7,若“3D打印課程每人投資200元,求學校為開設創(chuàng)客課程,需為學生人均投入多少錢?
【答案】(1)80,0.2;(2)36°;(3)該校300名學生中最喜歡“智能機器人”創(chuàng)客課程的有60人;(4)學校為開設創(chuàng)客課程,需為學生人均投入222.5元.
【解析】
(1)根據“3D”打印的頻數和頻率可以求得a的值,然后根據b對應的頻數即可求得b的值;
(2)根據頻數分布表中的數據可以求得“陶藝制作”對應扇形的圓心角的度數;
(3)根據頻數分布表中的數據可以求得該校300名學生中最喜歡“智能機器人”創(chuàng)客課程的人數;
(4)根據題意和題目中的數據,可以求得學校為開設創(chuàng)客課程,需為學生人均投入多少錢.
(1)a=36÷0.45=80,
b=16÷80=0.2,
故答案為:80,0.2;
(2)“陶藝制作”對應扇形的圓心角為:360°×=36°,
故答案為:36°;
(3)300×0.2=60(人),
即該校300名學生中最喜歡“智能機器人”創(chuàng)客課程的有60人;
(4)∵每生A、B、C、D四科投資比為4:3:6:7,“3D打印課程每人投資200元,
∴每生A、B、C、D四科投資分別為:200元、150元、300元、350元,
=222.5(元),
即學校為開設創(chuàng)客課程,需為學生人均投入222.5元.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,一次函數()的圖象與反比例函數(k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,﹣2).求:
(1)反比例函數和一次函數的解析式;
(2)寫出當反比例函數的值大于一次函數的值時的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,,點為拋物線的頂點.
(1)求拋物線的解析式;
(2)點為線段上一點(點不與點、重合),過點作軸的垂線,與直線交于點,與拋物線交于點,過點作交拋物線于點,過點作軸于點,可得矩形,如圖1,點在點左邊,當矩形的周長最大時,求的值,并求出此時的的面積;
(3)已知,點在拋物線上,連,直線,垂足為,若,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于點D,延長AO交⊙O于點E,連接CD、CE,若CE是⊙O的切線.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為4,OC=7,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠XOY=60°,點A在邊OX上,OA=2.過點A作AC⊥OY于點C,以AC為一邊在∠XOY內作等邊三角形ABC,點P是△ABC圍成的區(qū)域(包括各邊)內的一點,過點P作PD∥OY交OX于點D,作PE∥OX交OY于點E.設OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+mx+n經過點B(6,1),C(5,0),且與y軸交于點A.
(1)求拋物線的表達式及點A的坐標;
(2)點P是y軸右側拋物線上的一點,過點P作PQ⊥OA,交線段OA的延長線于點Q,如果∠PAB=45°.求證:△PQA∽△ACB;
(3)若點F是線段AB(不包含端點)上的一點,且點F關于AC的對稱點F′恰好在上述拋物線上,求FF′的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按擬定的價格進行試銷,通過對5天的試銷情況進行統(tǒng)計,得到如下數據:
(1)通過對上面表格中的數據進行分析,發(fā)現銷量y(件)與單價(元/件)之間存在一次函數關系,求y關于的函數關系式(不需要寫出函數自變量的取值范圍);
(2)預計在今后的銷售中,銷量與單價仍然存在(2)中的關系,且該產品的成本是20元/件.為使工廠獲得最大利潤,該產品的單價應定為多少?
(3)為保證產品在實際試銷中銷售量不得低于30件,且工廠獲得得利潤不得低于400元,請直接寫出單價的取值范圍;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某社區(qū)決定把一塊長,寬的矩形空地建成居民健身廣場,設計方案如圖,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為大小、形狀都相同的矩形),空白區(qū)域為活動區(qū),且四周的4個出口寬度相同,其寬度不小于,不大于,設綠化區(qū)較長邊為,活動區(qū)的面積為.為了想知道出口寬度的取值范圍,小明同學根據出口寬度不小于,算出.
(1)求與的函數關系式并直接寫出自變量的取值范圍;
(2)求活動區(qū)的最大面積;
(3)預計活動區(qū)造價為50元/,綠化區(qū)造價為40元/,若社區(qū)的此項建造投資費用不得超過72000元,求投資費用最少時活動區(qū)的出口寬度?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com