【題目】在平面直角坐標(biāo)系中,一次函數(shù))的圖象與反比例函數(shù)k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)AAHy軸,垂足為H,OH=3,tanAOH=,點(diǎn)B的坐標(biāo)為(m,﹣2).求:

1)反比例函數(shù)和一次函數(shù)的解析式;

2)寫出當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時(shí)的取值范圍.

【答案】1,;(2.

【解析】

1)根據(jù)正切函數(shù)可得AH=4,得到點(diǎn)A的坐標(biāo),代入y=即可求出反比例函數(shù)的解析式;根據(jù)反比例函數(shù)解析式求出B點(diǎn)的坐標(biāo),用待定系數(shù)法便可求出一次函數(shù)的解析式.

2)由(1)可知,點(diǎn)A和點(diǎn)B的坐標(biāo),根據(jù)函數(shù)圖象可直接解答.

解:(1)由OH=3,tanAOH=,得AH=4.即A-4,3),

A點(diǎn)坐標(biāo)代入y=k0),得:

反比例函數(shù)的解析式為:

B點(diǎn)坐標(biāo)代入中,得,

解得:m=6.即B6-2),

A、B兩點(diǎn)坐標(biāo)代入y=ax+b,得

,解得:

所以一次函數(shù)的解析式為

2)由(1)得,A-4,3),B6,-2),

當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時(shí),

則反比例函數(shù)的圖像在一次函數(shù)的圖像的上方,根據(jù)圖像得:

的取值范圍是:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2(2k1)x4k3=0,當(dāng)RtABC的斜邊a=,且兩直角邊bc恰好是這個(gè)方程的兩個(gè)根時(shí),求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉善縣將開展以珍愛生命,鐵拳護(hù)航為主題的交通知識競賽,某校對參加選拔賽的若干名同學(xué)的成績按A,B,C,D四個(gè)等級進(jìn)行統(tǒng)計(jì),繪制成如下不完整的頻數(shù)統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖

成績等級

頻數(shù)(人數(shù))

頻率

A

4

0.08

B

m

0.52

C

n

D

合計(jì)

1

1)求m   ,n   ;

2)在扇形統(tǒng)計(jì)圖中,求“C等級所對應(yīng)圓心角的度數(shù);

3“A等級4名同學(xué)中有3名男生和1名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全縣比賽,請用樹狀圖法或列表法求出恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,A(﹣3,2),B01),將線段AB沿x軸的正方向平移nn0)個(gè)單位,得到線段A,B恰好都落在反比例函數(shù)ym≠0)的圖象上.

1)用含n的代數(shù)式表示點(diǎn)AB的坐標(biāo);

2)求n的值和反比例函數(shù)ym≠0)的表達(dá)式;

3)點(diǎn)C為反比例函數(shù)ym≠0)圖象上的一個(gè)動點(diǎn),直線CAx軸交于點(diǎn)D,若CD2AD,請直接寫出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB⊙O的直徑,C、D為心⊙O上的點(diǎn),C是優(yōu)弧AD的中點(diǎn),CE⊥DBDB的延長線于點(diǎn)E

1)如圖1,判斷直線CE⊙O的位置關(guān)系,并說明理由.

2)如圖2,若tan∠BCE,連BC、CD,求cos∠BCD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

1)如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OPOA.求證:△OCP∽△PDA;

2)若圖1中△OCP與△PDA的面積比為14,求邊AB的長

3)如圖2,在(2)的條件下,擦去折痕AO、線段OP,連接BP,動點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN交與PB點(diǎn)F,作MEBP于點(diǎn)E,試問當(dāng)點(diǎn)M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,點(diǎn)為線段外一動點(diǎn),且,,填空:當(dāng)點(diǎn)位于__________時(shí),線段的長取到最大值__________,且最大值為;(用含、的式子表示).

2)如圖2,若點(diǎn)為線段外一動點(diǎn),且,,分別以為邊,作等邊和等邊,連接,

①圖中與線段相等的線段是線段__________,并說明理由;

②直接寫出線段長的最大值為__________

3)如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)為線段外一動點(diǎn),且,,請直接寫出線段長的最大值為__________,及此時(shí)點(diǎn)的坐標(biāo)為__________.(提示:等腰直角三角形的三邊長、滿足

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,網(wǎng)格紙中的每個(gè)小方格都是邊長為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為

1)把向下平移5格后得到,寫出點(diǎn),,的坐標(biāo),并畫出

2)把繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)后得到,寫出點(diǎn)的坐標(biāo),并畫出;

3)把以點(diǎn)為位似中心放大得到,使放大前后對應(yīng)線段的比為,寫出點(diǎn),,的坐標(biāo),并畫出

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實(shí)踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機(jī)器人、陶藝制作四門創(chuàng)客課程記為A、B、C、D,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成兩幅均不完整的統(tǒng)計(jì)圖表:

創(chuàng)客課程

頻數(shù)

頻率

“3D”打印

36

0.45

數(shù)學(xué)編程

0.25

智能機(jī)器人

16

b

陶藝制作

8

合計(jì)

a

1

請根據(jù)圖表中提供的信息回答下列問題:

(1)統(tǒng)計(jì)表中的a=______,b=______

(2)“陶藝制作對應(yīng)扇形的圓心角為______;

(3)根據(jù)調(diào)查結(jié)果,請你估計(jì)該校300名學(xué)生中最喜歡智能機(jī)器人創(chuàng)客課程的人數(shù);

(4)學(xué)校為開設(shè)這四門課程,預(yù)計(jì)每生AB、CD四科投資比為4367,若“3D打印課程每人投資200元,求學(xué)校為開設(shè)創(chuàng)客課程,需為學(xué)生人均投入多少錢?

查看答案和解析>>

同步練習(xí)冊答案