【題目】1)計(jì)算:

2)用簡(jiǎn)便方法計(jì)算:201822018×36182.

3)先化簡(jiǎn),再求值:3a12-(a1)(3a1),其中a2

【答案】(1) (2) 4000000;(3) 4a+4,12.

【解析】

(1) 原式利用立方根定義,算術(shù)平方根定義,以及二次根式性質(zhì)計(jì)算即可得到結(jié)果;(2)利用完全平方公式計(jì)算即可;(3) 原式第一項(xiàng)利用完全平方公式展開(kāi),第二項(xiàng)利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并得到最簡(jiǎn)結(jié)果,將a的值代入計(jì)算即可求出值.

(1)原式=-+1.2+0.8+3=-+5=;

(2) 201822018×36182=(2018-18)=2000=4000000;

(3)原式=3(a+2a+1)-(3a-a+3a-1)=3a+6a+3-3a-2a+1=4a+4,

當(dāng)a=2時(shí),原式=4×2+4=12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形分別為,用記號(hào)表示一個(gè)滿(mǎn)足條件的三角形,如(2,4,4)表示邊長(zhǎng)分別為2,4,4個(gè)單位長(zhǎng)度的一個(gè)三角形.

1)若這些三角形三邊的長(zhǎng)度為大于0且小于3的整數(shù)個(gè)單位長(zhǎng)度,請(qǐng)用記號(hào)寫(xiě)出所有滿(mǎn)足條件的三角形;

2)如圖,的中線,線段的長(zhǎng)度分別為2個(gè),6個(gè)單位長(zhǎng)度,且線段的長(zhǎng)度為整數(shù)個(gè)單位長(zhǎng)度,過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn).

①求的長(zhǎng)度;

②請(qǐng)直接用記號(hào)表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACBC10 cmAB12 cm,點(diǎn)DAB的中點(diǎn)連結(jié)CD,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿ACB的路徑運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)運(yùn)動(dòng)停止,速度為每秒2 cm,設(shè)運(yùn)動(dòng)時(shí)間為

1CD的長(zhǎng)

2當(dāng)為何值時(shí),ADP是直角三角形

3直接寫(xiě)出當(dāng)為何值時(shí),ADP是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】泰興市為進(jìn)一步改善生態(tài)環(huán)境決定對(duì)街道進(jìn)行綠化建設(shè),為此準(zhǔn)備購(gòu)進(jìn)甲、乙兩種樹(shù)木、已知甲種樹(shù)木的單價(jià)為元,乙種樹(shù)木的單價(jià)為.

(1)街道購(gòu)買(mǎi)甲、乙兩種樹(shù)木共花費(fèi)元,其中,乙種樹(shù)木是甲種樹(shù)木的一半多棵,請(qǐng)求出該街道購(gòu)買(mǎi)的甲、乙兩種樹(shù)木各多少棵;

(2)相關(guān)資料表明:甲種樹(shù)木的成活率為,乙種樹(shù)木的成活率為.現(xiàn)街道購(gòu)買(mǎi)甲、乙兩種樹(shù)木共棵,為了使這批樹(shù)木的總成活率不低于,則甲種樹(shù)木至多購(gòu)買(mǎi)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了定制校服,學(xué)校對(duì)某班全體學(xué)生的身高進(jìn)行了測(cè)量,按身高畫(huà)出直方圖如下:

1)直方圖共分 組,組距為 ;

2)若某同學(xué)的身高為162cm,在第 小組;(從左到右依次為1-8組)

3)該班共有 人;

4)若要從該班挑選40人參加運(yùn)動(dòng)會(huì)入場(chǎng)式,請(qǐng)?jiān)O(shè)計(jì)挑選方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC45°,AC9cm,F是高ADBE的交點(diǎn),則BF的長(zhǎng)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,拋物線y=mx22mx3 m≠0y軸交于點(diǎn)A,其對(duì)稱(chēng)軸與x軸交于點(diǎn)B頂點(diǎn)為C點(diǎn)

1求點(diǎn)A和點(diǎn)B的坐標(biāo)

2ACB=45°,求此拋物線的表達(dá)式;

32的條件下垂直于軸的直線與拋物線交于點(diǎn)Px1,y1Qx2,y2),與直線AB交于點(diǎn)Nx3y3),x3x1x2結(jié)合函數(shù)的圖象,直接寫(xiě)出x1+x2+x3的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,則∠A、∠C、∠E、∠F滿(mǎn)足的數(shù)量關(guān)系是(

A.A=∠C+∠E+∠FB.A+∠E-∠C-∠F180°

C.A+∠C-∠E-∠F180°D.A+∠E+∠C+∠F360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B分別是直線ab上的點(diǎn),∠1=∠2C、D在兩條直線之間,且∠C=∠D

1 證明:ab;

2 如圖,∠EFG=60°EFaH,FGbI,HKFG,若∠423,判斷∠5、∠6的數(shù)量關(guān)系,并說(shuō)明理由;

3 如圖∠EFG是平角的n分之1n為大于1的整數(shù)),FEaH,FGbI.點(diǎn)JFG上,連HJ.若∠8n7,則∠9:∠10______

查看答案和解析>>

同步練習(xí)冊(cè)答案