【題目】如圖,二次函數(shù)yax2+bx+c的圖象交x軸于點(diǎn)A(﹣2,0),點(diǎn)B1,0),交y軸于點(diǎn)C02.

1)求二次函數(shù)的解析式;

2)連接AC,在直線AC上方的拋物線上有一點(diǎn)N,過點(diǎn)Ny軸的平行線,交直線AC于點(diǎn)F,設(shè)點(diǎn)N的橫坐標(biāo)為n,線段NF的長為l,求l關(guān)于n的函數(shù)關(guān)系式;

3)若點(diǎn)Mx軸上,是否存在點(diǎn)M,使以B、CM為頂點(diǎn)的三角形是等腰三角形,若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,說明理由.

【答案】1y=﹣x2x+2;(2l=﹣n22n;(3)存在,點(diǎn)M的坐標(biāo)為(﹣1,0)或(1,0)或(1,0)或(﹣,0).

【解析】

1)先根據(jù)兩點(diǎn)的坐標(biāo),可設(shè)拋物線的解析式的交點(diǎn)式,再由點(diǎn)C的坐標(biāo)利用待定系數(shù)法求解即可;

2)先利用待定系數(shù)法求出直線AC的解析式,再根據(jù)點(diǎn)N的橫坐標(biāo)可求出點(diǎn)N與點(diǎn)F的縱坐標(biāo),從而根據(jù)即可得出答案;

3)先利用勾股定理求出BC、BM、CM的長,再根據(jù)等腰三角形的定義分三種情況討論,分別列出等式求解即可.

1)由兩點(diǎn)的坐標(biāo),設(shè)拋物線的表達(dá)式為

將點(diǎn)代入得

解得

故拋物線的表達(dá)式為;

2)設(shè)直線AC的表達(dá)式為

代入得

解得

則直線AC的表達(dá)式為

由題意設(shè)點(diǎn),則點(diǎn)

因此,,即

l關(guān)于n的函數(shù)關(guān)系式為;

3)存在,求解過程如下:

設(shè)點(diǎn),因點(diǎn),點(diǎn)

根據(jù)等腰三角形的定義分以下3種情況:

①當(dāng)時(shí),,解得(此時(shí)點(diǎn)M與點(diǎn)B重合,舍去)或

②當(dāng)時(shí),,解得

③當(dāng)時(shí),,解得

綜上,點(diǎn)M的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別在BC,CD上,AEAF,ACEF相交于點(diǎn)G.下列結(jié)論:①AC垂直平分EF;②BE+DFEF;③當(dāng)∠DAF15°時(shí),△AEF為等邊三角形;④當(dāng)∠EAF60°時(shí),SABESCEF.其中正確的是(  )

A. ①③B. ②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在EFG中,∠EFG90°EFFG,且點(diǎn)EF分別在矩形ABCD的邊AB,AD上.

1)如圖1,當(dāng)點(diǎn)GCD上時(shí),求證:AEF≌△DFG;

2)如圖2,若FAD的中點(diǎn),FGCD相交于點(diǎn)N,連接EN,求證:ENAE+DN

3)如圖3,若AEAD,EG,FG分別交CD于點(diǎn)M,N,求證:MG2MNMD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這個(gè)圖案是3世紀(jì)我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的,人們稱它為“趙爽弦圖”.已知AE=5,BE=3,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點(diǎn)的機(jī)會均等),則恰好落在正方形EFGH內(nèi)的概率為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究反比例函數(shù)的圖象與性質(zhì)時(shí),我們對函數(shù)解析式進(jìn)行了深入分析.首先,確定自變量x的取值范圍是全體非零實(shí)數(shù),因此函數(shù)圖象會被y軸分成兩部分;其次,分析解析式,得到yx的變化趨勢:當(dāng)x>0時(shí),隨著x值的增大,y的值減小,且逐漸接近于零,隨著x值的減小,y的值會越來越大,由此,可以大致畫出x>0時(shí)的部分圖象,如圖1所示.利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).

1)該函數(shù)自變量x的取值范圍_______________;

2)通過分析解析式畫出部分函數(shù)圖象,如圖2所示.請沿此思路在圖2中完善函數(shù)圖象的草圖并標(biāo)出此函數(shù)圖象與y軸的交點(diǎn)A;(畫出網(wǎng)格區(qū)域內(nèi)的部分即可)

3)觀察圖象,寫出該函數(shù)的一條性質(zhì): ;

4)若關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合圖象,直接寫出實(shí)數(shù)a的取值范圍: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平行四邊形ABCD中,ABAC,AB6,AD10,點(diǎn)P在邊AD上運(yùn)動(dòng),以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點(diǎn).

1)線段AC的長度是   

2)如圖2,當(dāng)⊙P與邊CD相切于點(diǎn)F時(shí),求AP的長;

3)不難發(fā)現(xiàn),當(dāng)⊙P與邊CD相切時(shí),⊙P與平行四邊形ABCD的邊有三個(gè)公共點(diǎn),隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個(gè)數(shù)也在變化,若公共點(diǎn)的個(gè)數(shù)為4,直接寫出相對應(yīng)的AP的值的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對應(yīng)點(diǎn)分別為,記旋轉(zhuǎn)角為

(1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

(2)如圖②,當(dāng)點(diǎn)落在的延長線上時(shí),求點(diǎn)的坐標(biāo);

(3)當(dāng)點(diǎn)落在線段上時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P所對弦AB上一動(dòng)點(diǎn),過點(diǎn)PPCAB于點(diǎn)C,取AP中點(diǎn)D,連接CD.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,CD兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),y的值為0;當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),y的值為3

小凡根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小凡的探究過程,請補(bǔ)充完整:

1)通過取點(diǎn)、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.2

3.2

3.4

3.3

3

2)建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

3)結(jié)合所畫出的函數(shù)圖象,解決問題:當(dāng)∠C=30°時(shí),AP的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點(diǎn)E,DHAE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DEBF于點(diǎn)O,下列結(jié)論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊答案