【題目】已知:在△EFG中,∠EFG=90°,EF=FG,且點E,F分別在矩形ABCD的邊AB,AD上.
(1)如圖1,當點G在CD上時,求證:△AEF≌△DFG;
(2)如圖2,若F是AD的中點,FG與CD相交于點N,連接EN,求證:EN=AE+DN;
(3)如圖3,若AE=AD,EG,FG分別交CD于點M,N,求證:MG2=MNMD.
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】
(1)先用同角的余角相等,判斷出∠AEF=∠DFG,即可得出結(jié)論;
(2)先判斷出△AHF≌△DNF,得出AH=DN,FH=FN,進而判斷出EH=EN,即可得出結(jié)論;
(3)先判斷出AF=PG,PF=AE,進而判斷出PG=PD,得出∠MDG=45°,進而得出∠FGE=∠GDM,判斷出△MGN∽△MDG,即可得出結(jié)論.
(1)∵四邊形ABCD是矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°,
∵∠EFG=90°,
∴∠AFE+∠DFG=90°,
∴∠AEF=∠DFG,
∵EF=FG,
∴△AEF≌△DFG(AAS);
(2)如圖2,,
延長NF,EA相交于H,
∴∠AFH=∠DFN,
由(1)知,∠EAF=∠D=90°,
∴∠HAF=∠D=90°,
∵點F是AD的中點,
∴AF=DF,
∴△AHF≌△DNF(ASA),
∴AH=DN,FH=FN,
∵∠EFN=90°,
∴EH=EN,
∵EH=AE+AH=AE+DN,
∴EN=AE+DN;
(3)如圖3,
過點G作GP⊥AD交AD的延長線于P,
∴∠P=90°,
同(1)的方法得,△AEF≌△PFG(AAS),
∴AF=PG,PF=AE,
∵AE=AD,
∴PF=AD,
∴AF=PD,
∴PG=PD,
∵∠P=90°,
∴∠PDG=45°,
∴∠MDG=45°,
在Rt△EFG中,EF=FG,
∴∠FGE=45°,
∴∠FGE=∠GDM,
∵∠GMN=∠DMG,
∴△MGN∽△MDG,
∴,
MG2=MNMD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分別是AC、AB、BC的中點.點P從點D出發(fā)沿折線DE﹣EF﹣FC﹣CD以每秒7個單位長的速度勻速運動;點Q從點B出發(fā)沿BA方向以每秒4個單位長的速度勻速運動,過點Q作射線QK⊥AB,交折線BC﹣CA于點G.點P、Q同時出發(fā),當點P繞行一周回到點D時停止運動,點Q也隨之停止.設(shè)點P、Q運動的時間是t秒(t>0).
(1)當點P在DE上,若S△PBQ=,求t的值.
(2)當點P運動到折線EF﹣FC上,且點P又恰好落在射線QK上時,求t的值;
(3)連結(jié)PG,當PG∥AB時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D是⊙O上的點,且OD∥BC,AC分別與BD、OD相交于點E、F.
(1)求證:點D為的中點;
(2)若CB=6,AB=10,求DF的長;
(3)若⊙O的半徑為5,∠DOA=80°,點P是線段AB上任意一點,試求出PC+PD的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是某路燈燈架示意圖,其中點A表示電燈,AB和BC為燈架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于點C,求電燈A與地面l的距離.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A(0,4)、B(-4,4)、C(-6,2),請在網(wǎng)格圖中進行如下操作:
(1)利用網(wǎng)格圖確定該圓弧所在圓的圓心D的位置(保留畫圖痕跡);
(2)連接AD、CD,則⊙D的半徑為_ __(結(jié)果保留根號),∠ADC的度數(shù)為_ __;
(3)若扇形DAC是一個圓錐的側(cè)面展開圖,求該圓錐底面半徑.(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學興趣小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊是由周長為30米的籬笆圍成.如圖所示,已知墻長為20米,設(shè)這個苗圃園垂直于墻的一邊長為x米
(1)若苗圃園的面積為108m2,求x的值,
(2)苗圃園的面積能達到120m2嗎?若能,求出x;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于點A(﹣2,0),點B(1,0),交y軸于點C(0,2).
(1)求二次函數(shù)的解析式;
(2)連接AC,在直線AC上方的拋物線上有一點N,過點N作y軸的平行線,交直線AC于點F,設(shè)點N的橫坐標為n,線段NF的長為l,求l關(guān)于n的函數(shù)關(guān)系式;
(3)若點M在x軸上,是否存在點M,使以B、C、M為頂點的三角形是等腰三角形,若存在,直接寫出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時水溫(℃)與開機后用時()成反比例關(guān)系,直至水溫降至30℃,飲水機關(guān)機,飲水機關(guān)機后即刻自動開機,重復上述自動程序.若在水溫為30℃時接通電源,水溫(℃)與時間()的關(guān)系如圖所示:
(1)分別寫出水溫上升和下降階段與之間的函數(shù)關(guān)系式;
(2)怡萱同學想喝高于50℃的水,請問她最多需要等待多長時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com