【題目】初中學(xué)生帶手機(jī)上學(xué),給學(xué)生帶來了方便,同時也帶來了一些負(fù)面影響.針對這種現(xiàn)象,某校九年級數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了若干名家長對“初中學(xué)生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計整理并制作了如圖的統(tǒng)計圖:
(1)這次調(diào)查的家長總?cè)藬?shù)為人,表示“無所謂”的家長人數(shù)為人;
(2)隨機(jī)抽查一個接受調(diào)查的家長,恰好抽到“很贊同”的家長的概率是;
(3)求扇形統(tǒng)計圖中表示“不贊同”的扇形的圓心角度數(shù).
【答案】
(1)200;40
(2)
(3)解:“不贊同”的扇形的圓心角度數(shù)為: ×360°=162°.
【解析】解:(1.)這次調(diào)查的家長總?cè)藬?shù)為:50÷25%=200(人) 表示“無所謂”的家長人數(shù)為:200×20%=40(人)
所以答案是:200,40.
(2.)“很贊同”的家長人數(shù)為:200﹣90﹣50﹣40=20(人)
抽到“很贊同”的家長的概率是20÷200= ,
所以答案是: .
【考點精析】認(rèn)真審題,首先需要了解扇形統(tǒng)計圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況),還要掌握條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形.并用A種紙片一張,B種紙片張,C種紙片兩張拼成如圖2的大正方形.
(1)請用兩種不同的方法求圖2大正方形的面積.
方法1: ;方法2:
(2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系.
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形ABCD中,∠B=60°,P、Q同時從B出發(fā),以每秒1個單位長度分別沿B→A→D→C和B→C→D方向運動至相遇時停止.設(shè)運動時間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是( )
A.當(dāng)t=4秒時,S=4
B.AD=4
C.當(dāng)4≤t≤8時,S=2 t
D.當(dāng)t=9秒時,BP平分梯形ABCD的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開學(xué)初,小芳和小亮去學(xué)校商店購買學(xué)習(xí)用品,小芳用30元錢購買鋼筆的數(shù)量是小亮用25元錢購買筆記本數(shù)量的2倍,已知每支鋼筆的價格比每本筆記本的價格少2元
(1)求每支鋼筆和每本筆記本各是多少元;
(2)學(xué)校運動會后,班主任再次購買上述價格的鋼筆和筆記本共50件作為獎品,獎勵給校運動會中表現(xiàn)突出的同學(xué),總費用不超過200元.請問至少要買多少支鋼筆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長線上一點,∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點P. 求證:∠ANC = ∠ABE.
應(yīng)用:Q是線段BC的中點,連結(jié)PQ. 若BC = 6,則PQ = ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點,且△BCE的面積是△ADE的面積的2倍,則k的值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com