【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請判斷BD、CE有何大小、位置關(guān)系,并證明.

【答案】(1)詳見解析;(2)BD=CE,BD⊥CE.

【解析】

(1)通過邊角邊的證明方法找出相應(yīng)的邊角對應(yīng)關(guān)系即可.

(2)根據(jù)第一問得大小關(guān)系,再求出∠DBC+∠DCB=90°即可得位置關(guān)系.

證明:(1)∵∠BAC=∠DAE=90°,

∴∠BAC+∠CAD=∠EAD+∠CAD,

∴∠BAD=∠CAE,

△BAD△CAE中,

,

∴△BAD≌△CAE(SAS).

(2)BD=CE,BD⊥CE,理由如下:

由(1)知,△BAD≌△CAE,

∴BD=CE;

∵△BAD≌△CAE,

∴∠ABD=∠ACE,

∵∠ABD+∠DBC=45°,

∴∠ACE+∠DBC=45°,

∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,

BD⊥CE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,A,B,C的對邊分別為a、b、c,下列說法中錯誤的是

A.如果CB=A,則ABC是直角三角形,且C=90;

B.如果,則ABC是直角三角形,且C=90;

C.如果(c+a)( c-a)=,則ABC是直角三角形,且C=90;

D.如果ABC325,則ABC是直角三角形,且C=90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DEABE,則下列結(jié)論:①DECD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+ACAB,其中正確的是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.

(1)B出發(fā)時與A相距_____千米.

(2)走了一段路后,自行車發(fā)生故障進行修理,所用的時間是____小時.

(3)B出發(fā)后_____小時與A相遇.

(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式.(寫出計算過程)

(5)請通過計算說明:若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,何時與A相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在解不等式|x+1|2時,我們可以采用下面的解答方法:

x+10時,|x+1|x+1

∴由原不等式得x+12.∴可得不等式組

∴解得不等式組的解集為x1

x+10時,|x+1|=﹣(x+1)

∴由原不等式得﹣(x+1)2.∴可得不等式組

∴解得不等式組的解集為x<﹣3

綜上所述,原不等式的解集為x1x<﹣3

請你仿照上述方法,嘗試解不等式|x2|1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)課上,老師要求學(xué)生根據(jù)圖示張鑫與李亮的對話內(nèi)容,展開如下活動:

活動1:仔細閱讀對話內(nèi)容

活動2:根據(jù)對話內(nèi)容,提出一些數(shù)學(xué)問題,并解答.

下面是學(xué)生提出的兩個問題,請你列方程解答.

(1)如果張鑫沒有辦卡,她需要付多少錢?

(2)你認為買多少元錢的書辦卡就便宜?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=mx2﹣(m+2)x+2(m≠0).
(1)求證:此二次函數(shù)的圖象與x軸總有交點;
(2)如果此二次函數(shù)的圖象與x軸兩個交點的橫坐標都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛在實踐課上要做一個如圖1所示的折扇,折扇扇面的寬度AB是骨柄長OA的 ,折扇張開的角度為120°.小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長為24 cm,寬為21cm.小剛經(jīng)過畫圖、計算,在矩形布料上裁剪下了最大的扇面,若不計裁剪和粘貼時的損耗,此時扇面的寬度AB為( )

A.21cm
B.20 cm
C.19cm
D.18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設(shè)他從山腳出發(fā)后所用時間為t(分鐘),所走的路程為s(),st之間的函數(shù)關(guān)系如圖所示.下列四種說法:①小明中途休息用了20分鐘;②小明休息前爬山的平均速度為每分鐘70米;③小明在上述過程中所走的路程為6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正確的是________(填序號)

查看答案和解析>>

同步練習(xí)冊答案