【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn) 輛;
(2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;
(3)該廠實行計劃工資制,每輛車元,超額完成任務(wù)每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
【答案】(1)前三天共生產(chǎn)輛;(2)產(chǎn)量最多的一天比生產(chǎn)量最少一天多生產(chǎn)輛;(3)工人這一周期的工資總額是53040元.
【解析】
(1)先求出前三天增減的量,然后再加上每天的150輛,進行計算即可求解;
(2)根據(jù)增減的量的大小判斷出星期六最多,星期五最少,用多的減去少的,根據(jù)有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù)進行計算即可求解;
(3)計算出這一周的增減量的總和,是正數(shù),則超產(chǎn),是負數(shù)則少生產(chǎn),然后根據(jù)工資計算方法進行計算.
解:(1),
(輛),
∴前三天共生產(chǎn)輛;
(2)觀察可知,星期六生產(chǎn)最多,星期五生產(chǎn)最少,(輛),
∴產(chǎn)量最多的一天比生產(chǎn)量最少一天多生產(chǎn)輛;
(3),
∴工人這一周期的工資總額是:(元).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為
(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得
① ②
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集為x>2或x<﹣2.
解答下列問題:
(1)一元二次不等式x2﹣25>0的解集為 ;
(2)分式不等式的解集為 ;
(3)解一元二次不等式2x2﹣3x<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把一根繩子對折后得到的圖形為線段AB,從點P處把繩子剪斷,已知AP:BP=4:5,若剪斷后的各段繩子中最長的一段為80cm,則繩子的原長為________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知銳角∠AOB,射線OC不與OA,OB重合,OM,ON分別平分∠AOC,∠BOC.
(1)當(dāng)OC在∠AOB的內(nèi)部
①若∠BOC=50°,∠AOC=20°,求∠MON的大小;
②若∠MON=30°,求∠AOB的大;
(2)當(dāng)射線OC在∠AOB外部,且∠AOB=80°,請直接寫出∠MON的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
在△ABC中,AB、BC、AC三邊的長分別為、、2,求這個三角形的面積.
解法一:如圖1,因為△ABC是等腰三角形,并且底AC=2,根據(jù)勾股定理可以求得底邊的高AF為1,所以S△ABC=×2×1=1.
解法二:建立邊長為1的正方形網(wǎng)格,在網(wǎng)格中畫出△ABC,使△ABC三個頂點都在小正方形的頂點處,如圖2所示,借用網(wǎng)格面積可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.
方法遷移:請解答下面的問題:
在△ABC中,AB、AC、BC三邊的長分別為、、,求這個三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小莉在跑道上進行100 m短跑比賽,兩人從出發(fā)點同時起跑,小明到達終點時,小莉離終點還差6 m,已知小明和小莉的平均速度分別為x m/s、y m/s.
(1)如果兩人重新開始比賽,小明從起點向后退6 m,兩人同時起跑能否同時到達終點?若能,請求出兩人到達終點的時間;若不能,請說明誰先到達終點.
(2)如果兩人想同時到達終點,應(yīng)如何安排兩人起跑位置?請設(shè)計兩種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是AB的中點,D是BE的中點,
(1)AB=4cm,BE=3cm,則CD=____________cm;
(2)AB=4cm,DE=2cm,則AE=____________cm;
(3)AB=4cm,BE=2cm,則AD=____________cm;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山,國家倡導(dǎo)全民植樹。在今年3月12日植樹節(jié)當(dāng)天,某校七年級一班48名學(xué)生全部參加了植樹活動,男生每人栽種4株,女生每人栽種3株,全班共栽種170株。
(1)該班男、女生各為多少人?
(2)學(xué)校選擇購買甲、乙兩種樹苗,甲樹苗 ,乙樹苗 .如果要使購買樹苗的錢不超過1200元,那么最多可以購買甲樹苗多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個實數(shù)根.
(1)是否存在實數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;
(2)求使(x1+1)(x2+1)為正整數(shù)的實數(shù)a的整數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com