【題目】小明和同桌小聰在課后復(fù)習(xí)時,對下面的一道思考題進(jìn)行了認(rèn)真的探索.
【思考題】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時點B到墻AC的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點B將向外移動________米.
解完【思考題】后,小聰提出了如下兩個問題:
(1)在【思考題】中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?
(2)在【思考題】中,梯子的頂端從A處沿墻AC下滑的距離與點B向外移動的距離,有可能相等嗎?為什么?
請你解答小聰提出的這兩個問題.
【答案】0.8.
【解析】試題分析:(1)(2)利用勾股定理判斷即可.
試題解析:
(1)不會是0.9米.若AA1=BB1=0.9,則A1C=2.4-0.9=1.5,B1C=0.7+0.9=1.6,1.52+1.62=4.81,2.52=6.25,
∵A1C2+B1C2≠A1B,
∴該題的答案不會是0.9米.
(2)有可能.設(shè)梯子頂端從A處下滑x米,點B向外也移動x米,則有(x+0.7)2+(2.4-x)2=2.52.解得x=1.7或x=0(舍去).
∴當(dāng)梯子頂端從A處下滑1.7米時,點B向外也移動1.7米,即梯子頂端從A處沿墻AC下滑的距離與點B向外移動的距離有可能相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:
甲、乙射擊成績統(tǒng)計表
平均數(shù) | 中位數(shù) | 方差 | 命中10環(huán)的次數(shù) | |
甲 | 7 | |||
乙 | 1 |
(1)請補(bǔ)全上述圖表(請直接在表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰將勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,點P是直線l3上一動點
(1)如圖1,當(dāng)點P在線段CD上運動時,∠PAC,∠APB,∠PBD之間存在什么數(shù)量關(guān)系?請你猜想結(jié)論并說明理由.
(2)當(dāng)點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請直接寫出∠PAC,∠APB,∠PBD之間的數(shù)量關(guān)系,不必寫理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖
① ∵
∴ ______// _____(______________________)
② ∵∠DAB+∠ABC=180°
∴ _____// _____(__________________)
③∵ AB // CD
∴∠_____+∠ABC=180°(___________________)
④∵ ______// ______
∴∠C=∠3(_______________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重疊部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿△ABC的∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
(1)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄?/span>∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系.
(2)根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為 ;
(3)如果一個三角形的最小角是15°,且滿足該三角形的三個角均是此三角形的好角,則此三角形另兩個角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,每個小正方形的邊長都為1.
(1)試作出直角坐標(biāo)系,使點A的坐標(biāo)為(2,-1);
(2)在(1)中建立的直角坐標(biāo)系中描出點B(3,4),C(0,1),并求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.
(1)求證:△ABD是等邊三角形;
(2)若BD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1、O2、O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標(biāo)是( )
A. (2014,0) B. (2015,﹣1) C. (2015,1) D. (2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,電力公司在電線桿上的C處引兩條等長的拉線CE、CF固定電線桿CD,拉線CE和地面成60°角,在離電線桿9米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米.
(1)求CD的長(結(jié)果保留根號);
(2)求EF的長(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com