【題目】(1)如圖1,已知△ABC,試確定一點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)畫出這個(gè)平行四邊形;
(2)如圖2,在矩形ABCD中,AB=4,BC=10,若要在該矩形中作出一個(gè)面積最大的△BPC,且使∠BPC=90°,求滿足條件的點(diǎn)P到點(diǎn)A的距離;
【答案】(1)詳見解析;(2)2或8
【解析】
(1)利用平行四邊形的判定方法畫出圖形即可.
(2)以點(diǎn)O為圓心,OB長(zhǎng)為半徑作⊙O,⊙O一定于AD相交于P1,P2兩點(diǎn),點(diǎn)P1,P2即為所求.
解:(1)如圖記為點(diǎn)D所在的位置.
(2)如圖,
∵AB=4,BC=10,∴取BC的中點(diǎn)O,則OB>AB.
∴以點(diǎn)O為圓心,OB長(zhǎng)為半徑作⊙O,⊙O一定于AD相交于P1,P2兩點(diǎn),
連接BP1,P1C,P1O,∵∠BPC=90°,點(diǎn)P不能再矩形外;
∴△BPC的頂點(diǎn)P1或P2位置時(shí),△BPC的面積最大,
作P1E⊥BC,垂足為E,則OE=3,
∴AP1=BE=OB﹣OE=5﹣3=2,
由對(duì)稱性得AP2=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售產(chǎn)品A,第一批產(chǎn)品A上市40天內(nèi)全部售完.該商場(chǎng)對(duì)第一批產(chǎn)品A上市后的銷售情況進(jìn)行了跟蹤調(diào)查,調(diào)查結(jié)果如圖所示:圖①中的折線表示日銷售量w與上市時(shí)間t的關(guān)系;圖②中的折線表示每件產(chǎn)品A的銷售利潤(rùn)y與上市時(shí)間t的關(guān)系.
(1)觀察圖①,試寫出第一批產(chǎn)品A的日銷售量w與上市時(shí)間t的關(guān)系;
(2)第一批產(chǎn)品A上市后,哪一天這家商店日銷售利潤(rùn)Q最大?日銷售利潤(rùn)Q最大是多少元?(日銷售利潤(rùn)=每件產(chǎn)品A的銷售利潤(rùn)×日銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市對(duì)位于筆直公路AC上兩個(gè)小區(qū)A,B的供水路線進(jìn)行優(yōu)化改造,供水站M在筆直公路AD上,測(cè)得供水站M在小區(qū)A的南偏東60°方向,在小區(qū)B的西南方向,小區(qū)A,B之間的距離為300(+1)米,求供水站M分別到小區(qū)A,B的距離.(結(jié)果可保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PE⊥BC,PF⊥CD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個(gè)結(jié)論:
①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形.
其中正確的結(jié)論有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=60°,∠2=60°,∠3=120°.
試說明DE∥BC,DF∥AB,根據(jù)圖形,完成下列推理:
∵∠1=60°,∠2=60°(已知)
∴∠1=∠2(等量代換)
∴ ∥ ( )
∵AB,DE相交,
∴∠4=∠1=60°
∵∠3=120°
∴∠3+∠4=180°
∴ ∥ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖所示.
(1)分別寫出下列各點(diǎn)的坐標(biāo):A′________;B′________;C′________;
(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到;
(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為________;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,邊長(zhǎng)為的等邊的項(xiàng)點(diǎn)都在軸上,頂點(diǎn)在第二象限內(nèi),經(jīng)過平移或軸對(duì)稱或旋轉(zhuǎn)都可以得到.
(1)沿軸向右平移得到,則平移的距離是 個(gè)長(zhǎng)度單位;與關(guān)于直線對(duì)稱,則對(duì)稱軸是 ,繞原點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)角度至少是 度;
(2)連接,交于點(diǎn),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|2x﹣1|的圖象和性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完成:
(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是 ;
(2)已知:
①當(dāng)x=時(shí),y=|2x﹣1|=0;
②當(dāng)x>時(shí),y=|2x﹣1|=2x﹣1
③當(dāng)x<時(shí),y=|2x﹣1|=1﹣2x;
顯然,②和③均為某個(gè)一次函數(shù)的一部分.
(3)由(2)的分析,取5個(gè)點(diǎn)可畫出此函數(shù)的圖象,請(qǐng)你幫小東確定下表中第5個(gè)點(diǎn)的坐標(biāo)(m,n),其中m= ;n= ;:
x | … | ﹣2 | 0 |
| 1 | m | … |
y | … | 5 | 1 | 0 | 1 | n | … |
(4)在平面直角坐標(biāo)系xOy中,作出函數(shù)y=|2x﹣1|的圖象;
(5)根據(jù)函數(shù)的圖象,寫出函數(shù)y=|2x﹣1|的一條性質(zhì).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com