【題目】(1)如圖,若大正方形的邊長為a,小正方形的邊長為b,則陰影部分的面積是 ;若如圖中的陰影部分剪下來,重新拼疊成如圖的一個矩形,則它長為 ;寬為 ;面積為 .
(2)由(1)可以得到一個公式: .
(3)利用你得到的公式計算:20192﹣2018×2020.
【答案】(1)a2﹣b2,a+b,a﹣b,(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)1.
【解析】
(1)利用正方形的面積公式,圖1陰影部分的面積為大正方形的面積-小正方形的面積,圖2長方形的長為a+b,寬為a-b,利用長方形的面積公式可得結(jié)論;
(2)由(1)建立等量關(guān)系即可;
(3)根據(jù)平方差公式進(jìn)行計算即可.
解:(1)圖①陰影部分的面積為:a2﹣b2,圖②長方形的長為a+b,寬為a﹣b,所以面積為:(a+b)(a﹣b),
故答案為:a2﹣b2,a+b,a﹣b,(a+b)(a﹣b);
(2)由(1)可得:(a+b)(a﹣b)=a2﹣b2,
故答案為:(a+b)(a﹣b)=a2﹣b2;
(3)20192﹣2018×2020,
=20192﹣(2019+1)(2019﹣1),
=20192﹣20192+1,
=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,BD⊥AC于點D ,點E為線段BC的中點,AD=2,tan A=2.
(1)求AB的長;
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1 .
(1)在圖中畫出△A1B1C1;
(2)點A1 , B1 , C1的坐標(biāo)分別為、、;
(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F(xiàn)是線段BC上的動點,將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是( 。
A.2﹣2
B.6
C.2﹣2
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于點C,PD⊥OB于點D,如果PC=6,那么PD的長是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,A、B、C三點的坐標(biāo)分別為(﹣2,4)、(﹣3,0)、(4,1).
(1)畫出△ABC;
(2)△ABC的面積為 ;
(3)△ABC向上平移3個單位長度,向左平移1個單位長度.請畫出圖形并寫出對應(yīng)點A1B1C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,點M是AD邊的中點,連接MC,將菱形ABCD翻折,使點A落在線段CM上的點E處,折痕交AB于點N,則線段EC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】又到了一年中的春游季節(jié).某班學(xué)生利用周末去參觀“三軍會師紀(jì)念塔”.下面是兩位同學(xué)的一段對話:
甲:我站在此處看塔頂仰角為60°;
乙:我站在此處看塔頂仰角為30°;
甲:我們的身高都是1.6m;
乙:我們相距36m.
請你根據(jù)兩位同學(xué)的對話,計算紀(jì)念塔的高度.(精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實數(shù)時,方程總有實數(shù)根.
(2)是否存在實數(shù)k使方程兩根的倒數(shù)和為2?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com