【題目】又到了一年中的春游季節(jié).某班學(xué)生利用周末去參觀“三軍會(huì)師紀(jì)念塔”.下面是兩位同學(xué)的一段對(duì)話(huà):
甲:我站在此處看塔頂仰角為60°;
乙:我站在此處看塔頂仰角為30°;
甲:我們的身高都是1.6m;
乙:我們相距36m.
請(qǐng)你根據(jù)兩位同學(xué)的對(duì)話(huà),計(jì)算紀(jì)念塔的高度.(精確到1米)

【答案】解:如圖,

CD=EF=BH=1.6m,CE=DF=36m,∠ADH=30°,∠AFH=30°,
在Rt△AHF中,∵tan∠AFH=
∴FH= ,
在Rt△ADH中,∵tan∠ADH= ,
∴DH= ,
而DH﹣FH=DF,
=36,即 =36,
∴AH=18 ,
∴AB=AH+BH=18 +1.6≈33(m).
答:紀(jì)念塔的高度約為33m.
【解析】在Rt△AHF中,由∠AFH的正切可表示FH,在Rt△ADH中,由∠ADH的正切可表示DH,再根據(jù)DH﹣FH=DF,可得關(guān)于AH的方程,解這個(gè)方程得到AH的長(zhǎng),則根據(jù)AB的構(gòu)成可求出AB的長(zhǎng)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿(mǎn)足條件的點(diǎn)C的個(gè)數(shù)是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,若大正方形的邊長(zhǎng)為a,小正方形的邊長(zhǎng)為b,則陰影部分的面積是   ;若如圖中的陰影部分剪下來(lái),重新拼疊成如圖的一個(gè)矩形,則它長(zhǎng)為   ;寬為   ;面積為   

2)由(1)可以得到一個(gè)公式:   

3)利用你得到的公式計(jì)算:201922018×2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,一條直線上依次有A、B、C三點(diǎn).

1)若BC60,AC3AB,求AB的長(zhǎng);

2)若點(diǎn)D是射線CB上一點(diǎn),點(diǎn)MBD的中點(diǎn),點(diǎn)NCD的中點(diǎn),求的值;

3)當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上運(yùn)動(dòng)時(shí),點(diǎn)EAP中點(diǎn),點(diǎn)FBC中點(diǎn),下列結(jié)論中:

是定值;

是定值.其中只有一個(gè)結(jié)論是正確的,請(qǐng)選擇正確結(jié)論并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD∥BC,AB⊥BC,AB=3,點(diǎn)E為射線BC上一個(gè)動(dòng)點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過(guò)點(diǎn)B′作AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)已知購(gòu)買(mǎi)1個(gè)足球和1個(gè)籃球共需130元,購(gòu)買(mǎi)2個(gè)足球和1個(gè)籃球共需180元.

(1)求每個(gè)足球和每個(gè)籃球的售價(jià);

(2)如果某校計(jì)劃購(gòu)買(mǎi)這兩種球共54個(gè),總費(fèi)用不超過(guò)4000元,問(wèn)最多可買(mǎi)多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).

①將△ABC沿x軸方向向左平移6個(gè)單位長(zhǎng)度,畫(huà)出平移后得到的△A1B1C1
②將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2
③直接寫(xiě)出點(diǎn)B2 , C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,FAD的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=BC,連結(jié)DE,CF

1)求證:四邊形CEDF是平行四邊形;

2)若AB=4,AD=6,∠B=60°,求DE的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案