【題目】如圖,在ABCD中,∠B=30°,AB=AC,O是兩條對(duì)角線的交點(diǎn),過(guò)點(diǎn)O作AC的垂線分別交邊AD,BC于點(diǎn)E,F(xiàn),點(diǎn)M是邊AB的一個(gè)三等分點(diǎn),則△AOE與△BMF的面積比為

【答案】3:4
【解析】解:設(shè)AB=AC=m,則BM= m, ∵O是兩條對(duì)角線的交點(diǎn),
∴OA=OC= AC= m,
∵∠B=30°,AB=AC,
∴∠ACB=∠B=30°,
∵EF⊥AC,
∴cos∠ACB= ,即cos30°= ,
∴FC= m,
∵AE∥FC,
∴∠EAC=∠FCA,
又∵∠AOE=∠COF,AO=CO,
∴△AOE≌△COF,
∴AE=FC= m,
∴OE= AE= m,
∴S△AOE= OAOE= × × m= m2 ,
作AN⊥BC于N,

∵AB=AC,
∴BN=CN= BC,
∵BN= AB= m,
∴BC= m,
∴BF=BC﹣FC= m﹣ m= m,
作MH⊥BC于H,
∵∠B=30°,
∴MH= BM= m,
∴S△BMF= BFMH= × m= m2 ,
= =
所以答案是3:4.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算 +( 2 +| ﹣2|+3tan30°﹣2(π﹣ 0=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑為10,弦AB的長(zhǎng)為6,M是弦AB上的一動(dòng)點(diǎn),則線段的OM的長(zhǎng)的取值范圍是(
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,直徑CD垂直于不過(guò)圓心O的弦AB,垂足為點(diǎn)N,連接AC,點(diǎn)E在AB上,且AE=CE
(1)求證:AC2=AEAB;
(2)過(guò)點(diǎn)B作⊙O的切線交EC的延長(zhǎng)線于點(diǎn)P,試判斷PB與PE是否相等,并說(shuō)明理由;
(3)設(shè)⊙O半徑為4,點(diǎn)N為OC中點(diǎn),點(diǎn)Q在⊙O上,求線段PQ的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( )
A. (a2+2b2)﹣2(﹣a2+b2)=3a2+b2
B.﹣a﹣1=
C. (﹣a)3m÷am=(﹣1)ma2m
D. 6x2﹣5x﹣1=(2x﹣1)(3x﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某專賣(mài)店有A,B兩種商品,已知在打折前,買(mǎi)60件A商品和30件B商品用了1080元,買(mǎi)50件A商品和10件B商品用了840元,A,B兩種商品打相同折以后,某人買(mǎi)500件A商品和450件B商品一共比不打折少花1960元,計(jì)算打了多少折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東60°方向,距離燈塔86n mile的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,此時(shí),B處與燈塔P的距離約為 n mile.(結(jié)果取整數(shù),參考數(shù)據(jù): ≈1.7, ≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣4=0
(1)當(dāng)m為何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)若邊長(zhǎng)為5的菱形的兩條對(duì)角線的長(zhǎng)分別為方程兩根的2倍,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式組 的解集中至少有5個(gè)整數(shù)解,則正數(shù)a的最小值是( )
A.3
B.2
C.1
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案