【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點C作CE∥AD交△ABC的外接圓O于點E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.
【答案】
(1)證明:由圓周角定理得,∠B=∠E,又∠B=∠D,
∴∠E=∠D,
∵CE∥AD,
∴∠D+∠ECD=180°,
∴∠E+∠ECD=180°,
∴AE∥CD,
∴四邊形AECD為平行四邊形;
(2)解:作OM⊥BC于M,ON⊥CE于N,
∵四邊形AECD為平行四邊形,
∴AD=CE,又AD=BC,
∴CE=CB,
∴OM=ON,又OM⊥BC,ON⊥CE,
∴CO平分∠BCE.
【解析】(1)根據(jù)圓周角定理得到∠B=∠E,得到∠E=∠D,根據(jù)平行線的判定和性質定理得到AE∥CD,證明結論;(2)作OM⊥BC于M,ON⊥CE于N,根據(jù)垂徑定理、角平分線的判定定理證明.
【考點精析】認真審題,首先需要了解平行四邊形的判定與性質(若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積),還要掌握三角形的外接圓與外心(過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點P從(0,3)出發(fā),沿所示方向運動,每當碰到矩形的邊時反彈,反彈時反射角等于入射角,當點P第2016次碰到矩形的邊時,點P的坐標為( )
A.(0,3)
B.(3,0)
C.(6,4)
D.(1,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,研究發(fā)現(xiàn),科學使用電腦時,望向熒光屏幕畫面的“視線角”α約為20°,而當手指接觸鍵盤時,肘部形成的“手肘角”β約為100°.圖2是其側面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.
(1)若屏幕上下寬BC=20cm,科學使用電腦時,求眼睛與屏幕的最短距離AB的長;
(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學要求的100°? (參考數(shù)據(jù):sin69°≈ ,cos21°≈ ,tan20°≈ ,tan43°≈ ,所有結果精確到個位)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC邊上的一個動點,將△ABD沿BD所在直線折疊,使點A落在點P處.
(1)如圖1,若點D是AC中點,連接PC.
①寫出BP,BD的長;
②求證:四邊形BCPD是平行四邊形.
(2)如圖2,若BD=AD,過點P作PH⊥BC交BC的延長線于點H,求PH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等邊△ABC中,點E、D分別是AC,BC邊的中點,點P為AB邊上的一個動點,連接PE,PD,PC,DE.設AP=x,圖1中某條線段的長為y,若表示y與x的函數(shù)關系的圖象大致如圖2所示,則這條線段可能是圖1中的( )
A.線段DE
B.線段PD
C.線段PC
D.線段PE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.
(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉,
①當∠EAC=90°時,求PB的長;
②直接寫出旋轉過程中線段PB長的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=﹣ x+3與坐標軸分別交于點A,B,點P在拋物線y=﹣ (x﹣ )2+4上,能使△ABP為等腰三角形的點P的個數(shù)有( )
A.3個
B.4個
C.5個
D.6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市開展一項自行車旅游活動,線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com