【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.
(1)求證:BD=CE;
(2)設BD與CE相交于點O,點M,N分別為線段BO和CO的中點,當△ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.
【答案】(1)證明見解析;(2)四邊形DEMN是正方形,證明見解析.
【解析】分析:(1)根據(jù)已知條件得到AD=AE,根據(jù)全等三角形的性質(zhì)即可得到結論;
(2)根據(jù)三角形中位線的性質(zhì)得到ED∥BC,ED=BC,MN∥BC,MN=BC,等量代換得到ED∥MN,ED=MN,推出四邊形EDNM是平行四邊形,由(1)知BD=CE,求得DM=EN,得到四邊形EDNM是矩形,根據(jù)全等三角形的性質(zhì)得到OB=OC,由三角形的重心的性質(zhì)得到O到BC的距離=BC,根據(jù)直角三角形的判定得到BD⊥CE,于是得到結論.
詳解:
(1)解:由題意得,AB=AC,
∵BD,CE分別是兩腰上的中線,
∴AD=AC,AE=AB,
∴AD=AE,
在△ABD和△ACE中
,
∴△ABD≌△ACE(ASA).
∴BD=CE;
(2)四邊形DEMN是正方形,
證明:∵E、D分別是AB、AC的中點,
∴AE=AB,AD=AC,ED是△ABC的中位線,
∴ED∥BC,ED=BC,
∵點M、N分別為線段BO和CO中點,
∴OM=BM,ON=CN,MN是△OBC的中位線,
∴MN∥BC,MN=BC,
∴ED∥MN,ED=MN,
∴四邊形EDNM是平行四邊形,
由(1)知BD=CE,
又∵OE=ON,OD=OM,OM=BM,ON=CN,
∴DM=EN,
∴四邊形EDNM是矩形,
在△BDC與△CEB中,,
∴△BDC≌△CEB,
∴∠BCE=∠CBD,
∴OB=OC,
∵△ABC的重心到頂點A的距離與底邊長相等,
∴O到BC的距離=BC,
∴BD⊥CE,
∴四邊形DEMN是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點,過C點的切線與AB的延長線交于點D,CE∥AB交⊙O于點E,連接AC、BC、AE.
(1)求證:①∠DCB=∠CAB;②CDCE=CBCA;
(2)作CG⊥AB于點G.若tan∠CAB=(k>1),求的值(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果點A(0,2)和點B(4,2)都在二次函數(shù)y=x2+bx+c的圖象上,那么此拋物線在直線_____的部分是上升的.(填具體某直線的某側)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點,A為此二次函數(shù)圖象的頂點,B為直線x=1上的一點,當△ABC為直角三角形時,寫出點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=108°,則∠D=( 。
A. 144°B. 110°C. 100°D. 108°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點 O 按如圖方式疊放在一起.
( 1 ) 如圖 1 , 若∠ BOD=35° , 則∠ AOC= ; 若∠AOC=135°, 則∠BOD= ;
(2)如圖2,若∠AOC=140°,則∠BOD= ;
(3)猜想∠AOC 與∠BOD 的大小關系,并結合圖1說明理由.
(4)三角尺 AOB 不動,將三角尺 COD 的 OD 邊與 OA 邊重合,然后繞點 O 按順時針或逆時針方向任意轉動一個角度,當∠A OD(0°<∠AOD<90°)等于多少度時,這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD 角度所有可能的值,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2cm,點P從點A出發(fā),以1cm/s的速度沿AC向點C運動,到達點C停止;同時點Q從點A出發(fā),以2cm/s的速度沿AB﹣BC向點C運動,到達點C停止,設△APQ的面積為y(cm2),運動時間為x(s),則下列最能反映y與x之間函數(shù)關系的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,某商場計劃購進甲、乙兩種節(jié)能訂共1200只,這兩種節(jié)能燈的進價、售價如下表:
(1)如何進貨,進貨款恰好為46000元?
(2)為確保乙型節(jié)能燈順利暢銷,在(1)的條件下,商家決定對乙型節(jié)能燈進行打折出售,且全部售完后,乙型節(jié)能燈的利潤率為20%,請同乙型節(jié)能燈需打幾折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)今“微信運動”被越來越多的人關注和喜愛,某興趣小組隨機調(diào)查了我市50名教師某日“微信運動”中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請根據(jù)以上信息,解答下列問題:
(1)寫出a,b,c,d的值并補全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com