【題目】目前節(jié)能燈在城市已基本普及,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種節(jié)能訂共1200只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

1)如何進(jìn)貨,進(jìn)貨款恰好為46000?

2)為確保乙型節(jié)能燈順利暢銷,在(1)的條件下,商家決定對(duì)乙型節(jié)能燈進(jìn)行打折出售,且全部售完后,乙型節(jié)能燈的利潤(rùn)率為20%,請(qǐng)同乙型節(jié)能燈需打幾折?

【答案】1)購(gòu)進(jìn)甲型節(jié)能燈400只,購(gòu)進(jìn)乙型節(jié)能燈800只進(jìn)貨款恰好為46000元;(2)乙型節(jié)能燈需打9折.

【解析】

1)設(shè)商場(chǎng)購(gòu)進(jìn)甲型節(jié)能燈x只,則購(gòu)進(jìn)乙型節(jié)能燈(1200-x)只,根據(jù)甲乙兩種燈的總進(jìn)價(jià)為46000元列出一元一次方程,解方程即可;
2)設(shè)乙型節(jié)能燈需打a折,根據(jù)利潤(rùn)=售價(jià)-進(jìn)價(jià)列出a的一元一次方程,求出a的值即可.

解:(1)設(shè)商場(chǎng)購(gòu)進(jìn)甲型節(jié)能燈x只,則購(gòu)進(jìn)乙型節(jié)能燈(1200-x)只,
由題意,得25x+451200-x=46000,
解得:x=400.
購(gòu)進(jìn)乙型節(jié)能燈1200-x=1200-400=800只.
答:購(gòu)進(jìn)甲型節(jié)能燈400只,購(gòu)進(jìn)乙型節(jié)能燈800只進(jìn)貨款恰好為46000元.
2)設(shè)乙型節(jié)能燈需打a折,
0.1×60a-45=45×20%
解得a=9,
答:乙型節(jié)能燈需打9折.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O0,0),點(diǎn)A5,0),點(diǎn)B0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)OB,C的對(duì)應(yīng)點(diǎn)分別為D,E,F

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),ADBC交于點(diǎn)H

①求證ADB≌△AOB

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對(duì)角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;

(2)設(shè)BDCE相交于點(diǎn)O,點(diǎn)M,N分別為線段BOCO的中點(diǎn),當(dāng)ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等時(shí),判斷四邊形DEMN的形狀,無(wú)需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個(gè)三角形,分別連接這個(gè)三角形三邊的中點(diǎn)得到圖2;再分別連接圖2中間小三角形的中點(diǎn),得到圖3.(若三角形中含有其它三角形則不記入)

按上面方法繼續(xù)下去,第20個(gè)圖有_____個(gè)三角形;第n個(gè)圖中有_____個(gè)三角形.(用n的代數(shù)式表示結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,ADABC的角平分線,DEABE,DFACF,則下列四個(gè)結(jié)論中:①DEDF;②AD上任意一點(diǎn)到AB,AC的距離相等;③∠BDE=∠CDF;④BDCDADBC,其中正確的有(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC是等腰直角三角形,四邊形ADEF是正方形,點(diǎn)D、F分別在AB、AC邊上,此時(shí)BD=CF,BDCF成立.

(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BDCF于點(diǎn)G.

①求證:BDCF; ②當(dāng)AB=4,AD=時(shí),求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店需要購(gòu)進(jìn)甲、乙兩種商品共160件,其進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)-進(jìn)價(jià))

1)若商店計(jì)劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應(yīng)分別購(gòu)進(jìn)多少件?

2)若商店計(jì)劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請(qǐng)問有哪幾種購(gòu)貨方案?并直接寫出其中獲利最大的購(gòu)貨方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線軸交于點(diǎn),與軸交于點(diǎn),與反比例函的圖象交于點(diǎn),且

1)求點(diǎn)的坐標(biāo)和反比例函數(shù)的解析式;

2)點(diǎn)軸上,反比例函數(shù)圖象上存在點(diǎn),使得四邊形為平行四邊形,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F分別在AD,BC邊上,且BEDF.

求證:(1)四邊形BFDE是平行四邊形;

(2)AE=CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案