【題目】如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉(zhuǎn),若點B,P在直線a的異側(cè),BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.

(1)延長MP交CN于點E(如圖2).

①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點A旋轉(zhuǎn)到圖3的位置時,點B,P在直線a的同側(cè),其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;

(3)若直線a繞點A旋轉(zhuǎn)到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.

【答案】
(1)證明:①如圖2:

∵BM⊥直線a于點M,CN⊥直線a于點N,

∴∠BMA=∠CNM=90°,

∴BM∥CN,

∴∠MBP=∠ECP,

又∵P為BC邊中點,

∴BP=CP,

又∵∠BPM=∠CPE,

∴△BPM≌△CPE,

②∵△BPM≌△CPE,

∴PM=PE

∴PM= ME,

∴在Rt△MNE中,PN= ME,

∴PM=PN.


(2)解:成立,如圖3.

證明:延長MP與NC的延長線相交于點E,

∵BM⊥直線a于點M,CN⊥直線a于點N,

∴∠BMN=∠CNM=90°

∴∠BMN+∠CNM=180°,

∴BM∥CN

∴∠MBP=∠ECP,

又∵P為BC中點,

∴BP=CP,

又∵∠BPM=∠CPE,

在△BPM和△CPE中,

∴△BPM≌△CPE,

∴PM=PE,

∴PM= ME,

則Rt△MNE中,PN= ME,

∴PM=PN.


(3)解:如圖4,

四邊形M′BCN′是矩形,

根據(jù)矩形的性質(zhì)和P為BC邊中點,得到△M′BP≌△N′CP,

得PM′=PN′成立.即“四邊形MBCN是矩形,則PM=PN成立”.


【解析】(1)①根據(jù)平行線的性質(zhì)證得∠MBP=∠ECP再根據(jù)BP=CP,∠BPM=∠CPE即可得到;②由△BPM≌△CPE,得到PM=PE則PM= ME,而在Rt△MNE中,PN= ME,即可得到PM=PN.(2)證明方法與②相同.(3)四邊形MBCN是矩形,則PM=PN成立.
【考點精析】解答此題的關(guān)鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關(guān)知識,掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,

求證:∠A+C=180°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為邊AB中點,點E、F分別在射線CA、BC上,且AE=CF,連結(jié)EF.
猜想:如圖①,當點E、F分別在邊CA和BC上時,線段DE與DF的大小關(guān)系為________.
探究:如圖②,當點E、F分別在邊CA、BC的延長線上時,判斷線段DE與DF的大小關(guān)系,并加以證明.
應(yīng)用:如圖②,若DE=4,利用探究得到的結(jié)論,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知D、E分別為△ABCAB、BC上的動點,直線DE與直線AC相交于F,∠ADE的平分線與∠B的平分線相交于P,∠ACB的平分線與∠F的平分線相交于Q

(1)如圖1,當FAC的延長線上時,求∠P與∠Q之間的數(shù)量關(guān)系;

(2)如圖2,當FAC的反向延長線上時,求∠P與∠Q之間的數(shù)量關(guān)系(用等式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果兩個三角形的兩條邊和其中一邊上的高對應(yīng)相等,那么這兩個三角形的第三邊所對的角的關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OE平分∠AOB,BD⊥OA于點D,AC⊥BO于點C,則圖中全等三角形共有_______對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【背景】國家為扶持軟件企業(yè)的發(fā)展,對企業(yè)實行月補貼,以提高企業(yè)的凈利潤.
【問題】國內(nèi)某軟件企業(yè)2014 年12月份并未如期收到700萬元的月補貼,這樣導致2014 年的凈利潤增長只有55%.而若補貼及時到位,則2014 年的凈利潤增長將達到60%.
(1)求2013年該企業(yè)凈利潤是多少萬元?
(2)又據(jù)統(tǒng)計,2014年12月該企業(yè)不含月補貼的月凈利潤為2100萬元,2015年1月及2月不含月補貼的月凈利潤比上月增加的百分數(shù)分別是m和 2m,這兩個月的月補貼相等,且都在2014年12月基礎(chǔ)上增加了2m.據(jù)推算,若以后各月不含月補貼的月凈利潤和月補貼均穩(wěn)定在2月份的水平不變,則 2015年該企業(yè)凈利潤將達到2013年的3倍,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB45,AOB內(nèi)有一定點P,且OP10.在OA上有一動點Q,OB上有一動點R.若ΔPQR周長最小,則最小周長是()

A. 10 B. C. 20 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系。

(1)小王同學探究此問題的方法是:延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,即可得出BE,EF,F(xiàn)D之間的數(shù)量關(guān)系,他的結(jié)論應(yīng)是____________。

象上面這樣有公共頂點,銳角等于較大角的一半,且組成這個較大角的兩邊相等的幾何模型稱為半角模型。

(2)拓展 如圖②,若在四邊形ABCD,,AB=AD,∠B+∠D=180°,E、F分別是BC,CD上的點,且∠EAF=∠BAD,則BE,EF,F(xiàn)D之間的數(shù)量關(guān)系是________________。

請證明你的結(jié)論。

(3)實際應(yīng)用 如圖③,在某次軍事演習中,艦艇甲在指揮中心(O)北偏西35°的A處,艦艇乙在指揮中心南偏東75°的B,,且兩艦艇到指揮中心的距離相等接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里小時的速度前進,1.2小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇之間的夾角為65°,試求此時兩艦艇之間的距離是_____________海里 (直接寫出答案)。

查看答案和解析>>

同步練習冊答案