【題目】如圖,在平面直角坐標系xOy中,已知點M0的坐標為(1,0),將線段OM0繞原點O逆時針方向旋轉45°,再將其延長到M1,使得M1M0⊥OM0,得到線段OM1;又將線段OM1繞原點O逆時針方向旋轉45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2;如此下去,得到線段OM3,OM4,OM5,…根據以上規(guī)律,請直接寫出OM2014的長度為_______.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC交AD于E,交AC于G,GF⊥BC于F,連接EF.
(1)如圖1,求證:四邊形AEFG是菱形;
(2)如圖2,若E為BG的中點,過點E作EM∥BC交AC于M,在不添加任何輔助線的情況下,請直接寫出圖2中是CM長倍的所有線段.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某校開展了以“夢想中國”為主題的攝影大賽,要求參賽學生每人交一件作品.現將
從中挑選的50件參賽作品的成績(單位:分)統(tǒng)計如下:
等級 | 成績(用m表示) | 頻數 | 頻率 |
A | 90≤ m ≤100 | x | 0.08 |
B | 80≤ m <90 | 34 | y |
C | m <80 | 12 | 0.24 |
合計 | 50 | 1 |
請根據上表提供的信息,解答下列問題:
(1)表中的值為_____________,的值為______________;(直接填寫結果)
(2)將本次參賽作品獲得A等級的學生依次用A1、A2、A3……表示.現該校決定從本次參賽作品獲得A等級的學生中,隨機抽取兩名學生談談他們的參賽體會,則恰好抽到學生A1和A2的概率為____________.(直接填寫結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明、小亮和小強三人準備下象棋,他們約定用“拋硬幣”的游戲方式來確定哪個人先下棋,規(guī)則如下:三人手中各持有一枚質地均勻的硬幣,他們同時將手中硬幣拋落到水平地面為一個回合,落地后,三枚硬幣中,恰有兩枚正面向上或者反面向上的兩人先下棋;若三枚硬幣均為正面向上或反面向上,則不能確定其中兩人先下棋.
(1)請你完成下面表示游戲一個回合所有可能出現的結果的樹狀圖;
(2)求出一個回合能確定兩人下棋的概率.
解:(1)樹狀圖為:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種型號的溫控水箱的工作過程是:接通電源后,在初始溫度20℃下加熱水箱中的水;當水溫達到設定溫度80℃時,加熱停止;此后水箱中的水溫開始逐漸下降,當下降到20℃時,再次自動加熱水箱中的水至80℃時,加熱停止;當水箱中的水溫下降到20℃時,再次自動加熱,…,按照以上方式不斷循環(huán).
小明根據學習函數的經驗,對該型號溫控水箱中的水溫隨時間變化的規(guī)律進行了探究.發(fā)現水溫y是時間x的函數,其中y(單位:℃)表示水箱中水的溫度.x(單位:min)表示接通電源后的時間.
下面是小明的探究過程,請補充完整:
(1)下表記錄了32min內14個時間點的溫控水箱中水的溫度y隨時間x的變化情況
接通電源后的時間x(單位:min) | 0 | 1 | 2 | 3 | 4 | 5 | 8 | 10 | 16 | 18 | 20 | 21 | 24 | 32 | … |
水箱中水的溫度y(單位:℃) | 20 | 35 | 50 | 65 | 80 | 64 | 40 | 32 | 20 | m | 80 | 64 | 40 | 20 | … |
m的值為 ;
(2)①當0≤x≤4時,寫出一個符合表中數據的函數解析式 ;
當4<x≤16時,寫出一個符合表中數據的函數解析式 ;
②如圖,在平面直角坐標系xOy中,描出了上表中部分數據對應的點,根據描出的點,畫出當0≤x≤32時,溫度y隨時間x變化的函數圖象:
(3)如果水溫y隨時間x的變化規(guī)律不變,預測水溫第8次達到40℃時,距離接通電源 min.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學開展以“我最喜歡的職業(yè)”為主題的調查活動,通過對學生的隨機抽樣調查得到一組數據,如圖是根據這組數據繪制成的不完整統(tǒng)計圖.
(1)把折線統(tǒng)計圖補充完整;
(2)求出扇形統(tǒng)計圖中,公務員部分對應的圓心角的度數;
(3)若從被調查的學生中任意抽取一名,求取出的這名學生最喜歡的職業(yè)是“教師”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是的邊的垂直平分線,垂足為點,與的延長線交于點,連接,,,與交于點,則下列結論:
①四邊形是菱形;
②;
③;
④四邊形
以上四個結論中所有正確的結論是( )
A.①②B.①②③C.②④D.①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、
丁四個班級植樹情況進行了調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據圖中的信息,完成下列問題:
(1)這四個班共植樹 棵;
(2)請你在答題卡上補全兩幅統(tǒng)計圖;
(3)求圖1中“甲”班級所對應的扇形圓心角的度數;
(4)若四個班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是ts.過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,請說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com