【題目】某中學(xué)開(kāi)展以“我最喜歡的職業(yè)”為主題的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)把折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求出扇形統(tǒng)計(jì)圖中,公務(wù)員部分對(duì)應(yīng)的圓心角的度數(shù);
(3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.
【答案】(1)見(jiàn)解析;(2)72°;(3)
【解析】
(1)根據(jù)軍人的人數(shù)與所占的百分比求出調(diào)查總?cè)藬?shù),再分別求出教師、醫(yī)生的人數(shù),補(bǔ)全統(tǒng)計(jì)圖即可;
(2)根據(jù)公務(wù)員的人數(shù)占總?cè)藬?shù)的比例再乘360°即可得出結(jié)論;
(3)根據(jù)教師的人數(shù)占總?cè)藬?shù)的比例即可得出結(jié)論.
解:(1)∵軍人的人數(shù)為20,百分比為10%,
∴學(xué)生總?cè)藬?shù)為20÷10%=200(人);
∵醫(yī)生的人數(shù)占15%,
∴醫(yī)生的人數(shù)為:200×15%=30(人),
∴教師的人數(shù)為:200﹣30﹣40﹣20﹣70=40(人),
∴折線(xiàn)統(tǒng)計(jì)圖如圖所示
;
(2)∵由扇形統(tǒng)計(jì)圖可知,公務(wù)員占20%,
∴20%×360°=72°;
(3)∵最喜歡的職業(yè)是“教師”的人數(shù)是40人,
∴從被調(diào)查的學(xué)生中任意抽取一名,求抽取的這名學(xué)生最喜歡的職業(yè)是“教師”的概率==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率; (用樹(shù)形圖或列表表示所有可能的結(jié)果)
(2)求三次傳球后,球恰在A手中的概率. (用樹(shù)形圖或列表表示所有可能的結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為BC上任意一點(diǎn)(可與點(diǎn)B或C重合),分別過(guò)B、C、D作射線(xiàn)AP的垂線(xiàn),垂足分別是B′、C′、D′,則BB′+CC′+DD′的最小值是( 。
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系,直線(xiàn)與y軸交于點(diǎn)A,與雙曲線(xiàn)交于點(diǎn).
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)將直線(xiàn)AB平移,使它與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若的面積為6,求直線(xiàn)CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)M0的坐標(biāo)為(1,0),將線(xiàn)段OM0繞原點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)45°,再將其延長(zhǎng)到M1,使得M1M0⊥OM0,得到線(xiàn)段OM1;又將線(xiàn)段OM1繞原點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)45°,再將其延長(zhǎng)到M2,使得M2M1⊥OM1,得到線(xiàn)段OM2;如此下去,得到線(xiàn)段OM3,OM4,OM5,…根據(jù)以上規(guī)律,請(qǐng)直接寫(xiě)出OM2014的長(zhǎng)度為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書(shū)中有一個(gè)問(wèn)題:“今有黃金九枚,白銀一十一枚,稱(chēng)之重適等.交易其一,金輕十三兩.問(wèn)金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱(chēng)重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問(wèn)黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)在線(xiàn)段上,由點(diǎn)向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí),停止運(yùn)動(dòng).以點(diǎn)為圓心,為半徑作,與交于點(diǎn),點(diǎn)在上且在矩形外,.
(1)當(dāng)時(shí),__________,扇形的面積=__________,點(diǎn)到的最短距離=__________.
(2)與相切時(shí),求的長(zhǎng)?
(3)如圖與交于點(diǎn)、,當(dāng)時(shí),求的長(zhǎng)?
(4)請(qǐng)從下面兩問(wèn)中,任選一道進(jìn)行作答.
①當(dāng)與有兩個(gè)公共點(diǎn)時(shí),直接寫(xiě)出的取值范圍.
②直接寫(xiě)出點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)以及的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=x2+bx+c,經(jīng)過(guò)點(diǎn)B(﹣4,0)和點(diǎn)A(1,0),與y軸交于點(diǎn)C.
(1)確定拋物線(xiàn)的表達(dá)式,并求出C點(diǎn)坐標(biāo);
(2)如圖1,拋物線(xiàn)上存在一點(diǎn)E,使△ACE是以AC為直角邊的直角三角形,求出所有滿(mǎn)足條件的點(diǎn)E坐標(biāo);
(3)如圖2,M,N是拋物線(xiàn)上的兩動(dòng)點(diǎn)(點(diǎn)M在點(diǎn)的N左側(cè)),分別過(guò)點(diǎn)M,N作PM∥x軸,PN∥y軸,PM,PN交于點(diǎn)P.點(diǎn)M,N運(yùn)動(dòng)時(shí),始終保持MN=不變,當(dāng)△MNP的兩條直角邊長(zhǎng)成二倍關(guān)系時(shí),請(qǐng)直接寫(xiě)出直線(xiàn)MN的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,點(diǎn)在上.以點(diǎn)為圓心,為半徑畫(huà)弧,交于點(diǎn)(點(diǎn)與點(diǎn)不重合),連接;再以點(diǎn)為圓心,為半徑畫(huà)弧,交于點(diǎn)(點(diǎn)與點(diǎn)不重合),連接;再以點(diǎn)為圓心,為半徑畫(huà)弧,交于點(diǎn)(點(diǎn)與點(diǎn)不重合),連接;,按照上面的要求一直畫(huà)下去,就會(huì)得到,則
(1)_________;
(2)與線(xiàn)段長(zhǎng)度相等的線(xiàn)段一共有__________條(不含).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com