【題目】二次函數(shù)y=x2+bx+c的圖象經(jīng)過坐標原點O和點A(7,0),直線AB交y軸于點B(0,﹣7),動點C(x,y)在直線AB上,且1<x<7,過點C作x軸的垂線交拋物線于點D,則CD的最值情況是( )
A.有最小值9B.有最大值9C.有最小值8D.有最大值8
【答案】B
【解析】
根據(jù)待定系數(shù)法求得拋物線的解析式好我在想AB的解析式,設(shè)C(x,x﹣7),則D(x,x2﹣7x),根據(jù)圖象的位置即可得出CD=﹣(x﹣4)2+9,根據(jù)二次函數(shù)的性質(zhì)即可求得.
解:∵二次函數(shù)y=x2+bx+c的圖象經(jīng)過坐標原點O和點A(7,0),
∴,解得,
∴二次函數(shù)為y=x2﹣7x,
∵A(7,0),B(0,﹣7),
∴直線AB為:y=x﹣7,
設(shè)C(x,x﹣7),則D(x,x2﹣7x),
∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,
∴1<x<7范圍內(nèi),有最大值9,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與y軸交于點A,與x軸交于點B(3,0)、C(﹣1,0)兩點.
(1)求直線AB和拋物線的表達式;
(2)當點F為直線AB上方拋物線上一動點(不與A、B重合),過點F作FP//x軸交直線AB于點P;過點F作FR//y軸交直線AB于點R,求PR的最大值;
(3)把射線BA繞著點B逆時針旋轉(zhuǎn)90°得到射線BM,點E在射線BM運動(不與點B重合),以BC、BE為鄰邊作平行四邊形BCDE,點H為DE邊上動點,連接CH,請直接寫出CH+HE的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D、E分別是△ABC的邊AB、AC的中點,H、G是邊BC上的點,且HG=BC,S△ABC =12,則圖中陰影部分的面積為( )
A.6B.4C.3D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AO⊥BC于點O,OE⊥AB于點E,以點O為圓心,OE為半徑作半圓,交AO于點F.
(1)求證:AC是⊙O的切線;
(2)若點F是OA的中點,OE=3,求圖中陰影部分的面積;
(3)在(2)的條件下,點P是BC邊上的動點,當PE+PF取最小值時,直接寫出BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形中,為對角線上任意一點(不與重合)連接,過點M作交(或的延長線)于點,連接.
感知:如圖①,當M為中點時,容易證(不用證明);
探究:如圖②,點M為對角線上任意一點(不與重合)請?zhí)骄?/span>與的數(shù)量關(guān)系,并證明你的結(jié)論.
應用:(1)直接寫出的面積S的取值范圍;
(2)若,則與的數(shù)量關(guān)系是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°;以斜邊AB上的一點O為圓心作圓O,與AC、BC分別相切與點D、E.
(1)求證:CD=CE;
(2)若AC=8,AB=10;求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國慶期間某外地旅行團來重慶的網(wǎng)紅景點打卡,游覽結(jié)束后旅行社對該旅行團做了一次“我最喜愛的巴渝景點”問卷調(diào)查(每名游客都填了調(diào)査表,且只選了一個景點),統(tǒng)計后發(fā)現(xiàn)洪崖洞、長江索道、李子壩輕軌站、磁器口榜上有名.其中選李子壩輕軌站的人數(shù)比選磁器口的少人;選洪崖洞的人數(shù)不僅比選磁器口的多,且為整數(shù)倍;選磁器口與洪崖洞的人數(shù)之和是選李子壩輕軌站與長江索道的人數(shù)之和的倍;選長江索道與洪崖洞的人數(shù)之和比選李子壩輕軌站與磁器口的人數(shù)之和多24人.則該旅行團共有_______人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,,E,M為線段AC上兩個不重合的動點(點E在點M上方,且均不與端點重合),,與BC交于點F,四邊形EMNF為平行四邊形,連結(jié)BN.
(1)求直線AC與直線BC的解析式;
(2)若設(shè)點F的橫坐標為x,點M的縱坐標為y,當四邊形EMNF為菱形時,請求y關(guān)于x的函數(shù)解析式及相應x的取值范圍;
(3)請求出當為等腰三角形時,面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:按螺旋式分別延長n邊形的n條邊至一點,若順次連接這些點所得的圖形與原多邊形相似,則稱它為原圖形的螺旋相似圖形.例如:如圖1,分別延長多邊形A1A2…An的邊得A1′,A2′,…,An′,若多邊形A1′A2′…An′與多邊形A1A2…An相似,則多邊形A1′A2′…An′就是A1A2…An的螺旋相似圖形.
(1)如圖2,已知△ABC是等邊三角形,作出△ABC的一個螺旋相似圖形,簡述作法,并給以證明.
(2)如圖3,已知矩形ABCD,請?zhí)剿骶匦?/span>ABCD是否存在螺旋相似圖形,若存在,求出此時AB與BC的比值;若不存在,說明理由.
(3)如圖4,△ABC是等腰直角三角形,AC=BC=2,分別延長CA,AB,BC至A′,B′,C′,使△A′B′C′是△ABC的螺旋相似三角形.若AA′=kAC,請直接寫出BB′,CC′的長(用含k的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com