【題目】如圖,(1)如果∠1=__________,那么DE∥AC;(同位角相等,兩直線平行);
(2)如果∠1=__________,那么EF∥BC;(內(nèi)錯(cuò)角相等,兩直線平行);
(3)如果∠DEF+__________=180°,那么DE∥AC;(同旁?xún)?nèi)角互補(bǔ),兩直線平行);
(4)如果∠2+__________=180°,那么AB∥DF;(同旁?xún)?nèi)角互補(bǔ),兩直線平行).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知線段AC∥y軸,點(diǎn)B在第一象限,且AO平分∠BAC,AB交y軸與G,連OB、OC.
(1)判斷△AOG的形狀,并予以證明;
(2)若點(diǎn)B、C關(guān)于y軸對(duì)稱(chēng),求證:AO⊥BO;
(3)在(2)的條件下,如圖2,點(diǎn)M為OA上一點(diǎn),且∠ACM=45°,BM交y軸于P,若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)E、D分別從A、C出發(fā),沿AC,CB方向以相同的速度在線段AC,CB上運(yùn)動(dòng),AD、BE相交于F點(diǎn).
(1)求證:△ABE≌△CAD;
(2)當(dāng)E、D運(yùn)動(dòng)時(shí),∠BFD大小是否發(fā)生改變?若不變求其大小,若改變求其變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:
(2)如圖,四邊形ABCD是平行四邊形,AE平分∠BAD,交DC的延長(zhǎng)線于點(diǎn)E.求證:DA=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有A,B兩種商品,買(mǎi)2件A商品和1件B商品用了90元,買(mǎi)3件A商品和2件B商品共用了160元.
(1)求A,B兩種商品每件多少元?
(2)如果小亮準(zhǔn)備購(gòu)買(mǎi)A,B兩種商品共10件,總費(fèi)用不超過(guò)350元,且不低于300元,問(wèn)有幾種購(gòu)買(mǎi)方案,哪種方案費(fèi)用最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1的小正方形組成的方格紙中,稱(chēng)小正方形的頂點(diǎn)為“格點(diǎn)”,頂點(diǎn)全在格點(diǎn)上的多邊形為“格點(diǎn)多邊形”.格點(diǎn)多邊形的面積記為S,其內(nèi)部的格點(diǎn)數(shù)記為N,邊界上的格點(diǎn)數(shù)記為L,例如,圖中的三角形ABC是格點(diǎn)三角形,其中S=2,N=0,L=6;圖中格點(diǎn)多邊形DEFGHI所對(duì)應(yīng)的S,N,L分別是 _.經(jīng)探究發(fā)現(xiàn),任意格點(diǎn)多邊形的面積S可表示為S=aN+bL+c,其中a,b,c為常數(shù),則當(dāng)N=5,L=14時(shí),S= .(用數(shù)值作答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( )
A.130°
B.120°
C.110°
D.100°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com