如圖,在平面直角坐標(biāo)系xOy中,△ABC的邊AC在x軸上,邊BC⊥x軸,雙曲線與邊BC交于點(diǎn)D(4,m),與邊AB交于點(diǎn)E(2,n).

(1)求n關(guān)于m的函數(shù)關(guān)系式;
(2)若BD=2,tan∠BAC=,求k的值和點(diǎn)B的坐標(biāo).
解:(1)∵點(diǎn)D(4,m),點(diǎn)E(2,n)在雙曲線,
∴4m=2n,解得n=2m。
(2)如圖,過點(diǎn)E作EF⊥BC于點(diǎn)F,

∵由(1)可知n=2m,∴DF=m。
∵BD=2,∴BF=2﹣m。
∵點(diǎn)D(4,m),點(diǎn)E(2,n),∴EF=4﹣2=2。
∵EF∥x軸,∴,解得m=1。
∴D(4,1)!鄈=4×1=4,B(4,3)。

試題分析:(1)直接根據(jù)反比例函數(shù)中k=xy的特點(diǎn)進(jìn)行解答即可。
(2)過點(diǎn)E作EF⊥BC于點(diǎn)F,根據(jù)(1)中m、n的關(guān)系可得出DF=m,故BF=2﹣m,再由點(diǎn)D(4,m),點(diǎn)E(2,n)可知EF=4﹣2=2,再根據(jù)EF∥x軸可知tan∠BAC=tan∠BEF=,由此即可得出結(jié)論。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰直角三角形ABC頂點(diǎn)A在x軸上,∠BCA=90°,AC=BC=2,反比例函數(shù)(x>0)的圖象分別與AB,BC交于點(diǎn)D,E.連結(jié)DE,當(dāng)△BDE∽△BCA時(shí),點(diǎn)E的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將邊長(zhǎng)為4的等邊三角形AOB放置于平面直角坐標(biāo)系xoy中,F(xiàn)是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A、B重合),過點(diǎn)F的反比例函數(shù)(k>0,x>0)與OA邊交于點(diǎn)E,過點(diǎn)F作FC⊥x軸于點(diǎn)C,連結(jié)EF、OF.

(1)若SOCF=,求反比例函數(shù)的解析式;
(2)在(1)的條件下,試判斷以點(diǎn)E為圓心,EA長(zhǎng)為半徑的圓與y軸的位置關(guān)系,并說明理由;
(3)AB邊上是否存在點(diǎn)F,使得EF⊥AE?若存在,請(qǐng)求出BF:FA的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線與雙曲線(k>0,x>0)交于點(diǎn)A,將直線向上平移4個(gè)單位長(zhǎng)度后,與y軸交于點(diǎn)C,與雙曲線(k>0,x>0)交于點(diǎn)B,若OA=3BC,則k的值為
A.3B.6C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知反比列函數(shù)y=的圖象在每一條曲線上,y都隨x的增大而增大,
(1)求k的取值范圍;
(2)在曲線上取一點(diǎn)A,分別向x軸、y軸作垂線段,垂足分別為B、C,坐標(biāo)原點(diǎn)為O,若四邊形ABOC面積為12,求此函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,兩個(gè)反比例函數(shù)在第一象限內(nèi)的圖象分別是C1和C2,設(shè)點(diǎn)P在C1上,PA⊥x軸于點(diǎn)A,交C2于點(diǎn)B,則△POB的面積為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2013年浙江義烏3分)已知兩點(diǎn)P1(x1,y1)、P2(x2,y2)在反比例函數(shù)的圖象上,當(dāng)x1>x2>0時(shí),下列結(jié)論正確的是【   】
A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于反比例函數(shù),下列說法正確的是
A.圖象經(jīng)過點(diǎn)(1,﹣3)B.圖象在第二、四象限
C.x>0時(shí),y隨x的增大而增大D.x<0時(shí),y隨x增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請(qǐng)寫一個(gè)圖象在第二、四象限的反比例函數(shù)解析式:     

查看答案和解析>>

同步練習(xí)冊(cè)答案