【題目】如圖,在正方形ABCD中,BC=2,點P,Q均為AB邊上的動點,BECP,垂足為E,則QD+QE的最小值為(

A.2B.3C.D.

【答案】D

【解析】

根據(jù)BECP可得點E在以BC為直徑的圓上,作點E關于AB的對稱點F,連接DF,當QDFAB交點時,QD+QE最小作半圓與以BC為直徑的半圓關于AB對稱,連接DH,交半圓,此時DFQD+QE,且為最小值,求出DF即可

解:如圖,∵BECP,

∴點E在以BC為直徑的圓上,

作點E關于AB的對稱點F,

QE=QF,

QD+QE= QD+QF,

連接DF,當QDFAB交點時,QD+QE最小

作半圓與以BC為直徑的半圓關于AB對稱,連接DH,交半圓,此時DFQD+QE,且為最小值,此時CD=2,BH=1,HC=3,

中,,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將一張直角三角形紙片放置在平面直角坐標系中,點ABx軸上,點Cy軸上,,且,

(Ⅰ)如圖①,求點C的坐標;

(Ⅱ)如圖②,沿斜邊的中線把這張紙片剪成兩個三角形,將沿直線方向平移(點A、、B始終在同一直線上),當點與點重合時停止平移,

①如圖③,在平移的過程中,交于點E,、分別交于點F、P,當點平移到原點時,求的長;

②在平移的過程中,當重疊部分的面積最大時,求此時點的坐標.(直接寫出結論即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,內(nèi)接于,過點的切線

1)如圖,求證:

2)如圖,點的中點,射線于點,交優(yōu)弧于點,交于點,求證:;

3)如圖,在(2)的條件下,若,,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線與直線l交于x軸上的一點A,和另一點

求拋物線的解析式;

P是拋物線上的一個動點PA,B兩點之間,但不包括A,B兩點于點M,軸交AB于點N,求MN的最大值;

如圖2,將拋物線繞頂點旋轉(zhuǎn)后,再作適當平移得到拋物線,已知拋物線的頂點E在第一象限的拋物線上,且拋持線與拋物線交于點D,過點D軸交拋物線于點F,過點E軸交拋物線于點G,是否存在這樣的拋物線,使得四邊形DFEG為菱形?若存在,請求E點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx5的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A坐標為(1,0),一次函數(shù)yx+k的圖象經(jīng)過點BC

1)試求二次函數(shù)及一次函數(shù)的解析式;

2)如圖1,點D(2,0)x軸上一點,P為拋物線上的動點,過點PD作直線PD交線段CB于點Q,連接PC、DC,若SCPD3SCQD,求點P的坐標;

3)如圖2,點E為拋物線位于直線BC下方圖象上的一個動點,過點E作直線EGx軸于點G,交直線BC于點F,當EF+CF的值最大時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在RtABC中,∠ABC=90°,AB=BC,將△ABC繞點A逆時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α0°<α<90°),直線BDCE交于點F

1)如圖1,當α=45°時,求證:CF=EF;

2)如圖2,在旋轉(zhuǎn)過程中,當α為任意銳角時,

CFB的度數(shù)是否變化?若不變,請求出它的度數(shù);

結論“CF=EF”,是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】垃圾分類就是新時尚.樹立正確的垃圾分類觀念,促進青少年養(yǎng)成良好的文明習慣,對于增強公共意識,提升文明素質(zhì)具有重要意義.為了調(diào)査學生對垃圾分類知識的了解情況,從甲、乙兩校各隨機抽取20名學生進行了相關知識測試,獲得了他們的成績(百分制,單位:分),并對數(shù)據(jù)(成績)進行了整理、描述和分析,下面給出了部分信息.

a.甲、乙兩校學生樣本成績頻數(shù)分布表及扇形統(tǒng)計圖如下:

甲校學生樣本成績頻數(shù)分布表(表1

成績m(分)

頻數(shù)

頻率

0.10

4

0.20

7

0.35

2

合計

20

1.0

b.甲、乙兩校學生樣本成績的平均分、中位數(shù)、眾數(shù)、方差如下表所示:(表2

平均分

學校

中位數(shù)

眾數(shù)

方差

76.7

77

89

150.2

78.1

80

135.3

其中,乙校20名學生樣本成績的數(shù)據(jù)如下:

54 72 62 91 87 69 88 79 80 62 80 84 93 67 87 87 90 71 68 91

請根據(jù)所給信息,解答下列問題:

1)表1___________;表2中的眾數(shù)_________;

2)乙校學生樣本成績扇形統(tǒng)計圖(圖1)中,這一組成績所在扇形的圓心角度數(shù)是_________度;

3)在此次測試中,某學生的成績是79分,在他所屬學校排在前10名,由表中數(shù)據(jù)可知該學生是________校的學生(填),理由是________________________;

4)若乙校1000名學生都參加此次測試,成績80分及以上為優(yōu)秀,請估計乙校成績優(yōu)秀的學生約為________人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成的矩形的周長與面積相等,則稱這個點為“美好點”,如圖,過點P分別作x軸,y軸的垂線,與坐標軸圍成的矩形OAPB的周長與面積相等,則P為“美好點”.

1)在點M2,2),N4,4),Q(﹣6,3)中,是“美好點”的有   ;

2)若“美好點”Pa,﹣3)在直線yx+bb為常數(shù))上,求ab的值;

3)若“美好點”P恰好在拋物線yx2第一象限的圖象上,在x軸上是否存在一點Q使得△POQ為直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市在黨中央實施精準扶貧政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額﹣生產(chǎn)費用)

(1)請直接寫出yx以及zx之間的函數(shù)關系式;

(2)求wx之間的函數(shù)關系式;并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?

(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?

查看答案和解析>>

同步練習冊答案