【題目】如圖,已知圓O的直徑AB垂直于弦CD于點E,連接CO并延長交AD于點F,且CF⊥AD.
(1)證明:點E是OB的中點;
(2)若AB=8,求CD的長.
【答案】(1)見解析;(2)
【解析】
(1)要證明:E是OB的中點,只要求證OE=OB=OC,即證明∠OCE=30°即可;
(2)在直角△OCE中,根據勾股定理就可以解得CE的長,進而求出CD的長.
(1)證明:連接AC,如圖
∵直徑AB垂直于弦CD于點E,
∴,AC=AD,
∵過圓心O的線CF⊥AD,
∴AF=DF,即CF是AD的中垂線,
∴AC=CD,
∴AC=AD=CD.
即:△ACD是等邊三角形,
∴∠FCD=30°,
在Rt△COE中,OE=OC,
∴OE=OB,
∴點E為OB的中點;
(2)解:在Rt△OCE中,AB=8
∴OC=AB=4,
又∵BE=OE,
∴OE=2,
∴CE=,
∴CD=2CE=.
科目:初中數學 來源: 題型:
【題目】為了提高學生的綜合素質,某中學成立了以下社團:A.機器人,B.圍棋,C.羽毛球,D.電影配音.每人只能加入一個社團,為了解學生參加社團的情況,從參加社團的學生中隨機抽取了部分學生進行調查,并將調查結果繪制成如圖兩幅不完整的統(tǒng)計圖,其中圖(1)中A所占扇形的圓心角為36°.
根據以上信息,解答下列問題:
(1)這次被調查的學生共有 人,B所占扇形的圓心角是 度;
(2)請你將條形統(tǒng)計圖補充完整;
(3)若該校共有1000名學生加人了社團,請你估計這1000名學生中有多少人參加了羽毛球社團;
(4)在機器人社團活動中,由于甲、乙、丙、丁四人平時的表現優(yōu)秀,現決定從這四人中任選兩名參加機器人大賽,用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點A在x軸上,點B的坐標是(0,3),若點C恰好在反比例函數第一象限內的圖象上,那么點C的坐標為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(t,0),B(t+2,0),C(n,1),若射線OC上存在點P,使得△ABP是以AB為腰的等腰三角形,就稱點P為線段AB關于射線OC的等腰點.
(1)如圖,t=0,
①若n=0,則線段AB關于射線OC的等腰點的坐標是 ;
②若n<0,且線段AB關于射線OC的等腰點的縱坐標小于1,求n的取值范圍;
(2)若n=,且射線OC上只存在一個線段AB關于射線OC的等腰點,則t的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,繪出某一結果出現的頻率折線圖.如圖所示,則符合這一結果的實驗可能是( )
A.拋一枚硬幣,出現正面朝上
B.從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球
C.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D.擲一個正六面體的骰子,出現3點朝上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,已知線段和點O,利用直尺和圓規(guī)作,使點O是的內心(不寫作法,保留作圖痕跡);
(2)在所畫的中,若,則的內切圓半徑是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD中,點K在AD上,連接BK,過點A,C作BK的垂線,垂足分別為M,N,點O是正方形ABCD的中心,連接OM,ON.
(1)求證:AM=BN;
(2)請判斷△OMN的形狀,并說明理由;
(3)若點K在線段AD上運動(不包括端點),設AK=x,△OMN的面積為y,求y關于x的函數關系式(寫出x的范圍);若點K在射線AD上運動,且△OMN的面積為,請直接寫出AK長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了提高學生的綜合素養(yǎng),某校開設了五門手工活動課.按照類別分為:“剪紙”、“沙畫”、“葫蘆雕刻”、“泥塑”、“插花”.為了了解學生對每種活動課的喜愛情況,隨機抽取了部分同學進行調查,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據以上信息,回答下列問題:
(1)本次調查的樣本容量為________;統(tǒng)計圖中的________,________;
(2)通過計算補全條形統(tǒng)計圖;
(3)該校共有2500名學生,請你估計全校喜愛“葫蘆雕刻”的學生人數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com