王老師在黑板上寫出了一道題:如圖(1),線段AB=CD,AB與CD相交于點(diǎn)O,且∠AOC=60°,試比較AC+BD與AB的大小,小聰思考片刻就想出來了,如圖(2),他說將AB平移到CE位置,連接BE,DE,就可以比較AC+BD與AB的大小了,你知道他是怎樣比較的嗎?
考點(diǎn):平移的性質(zhì)
專題:
分析:根據(jù)三角形的三邊關(guān)系,及平移的基本性質(zhì)可得.
解答:解:由平移的性質(zhì)知,AB與CE平行且相等,
所以四邊形ACEB是平行四邊形,BE=AC,
當(dāng)B、D、E不共線時,
∵AB∥CE,∠DCE=∠AOC=60°,
∵AB=CE,AB=CD,
∴CE=CD,
∴△CED是等邊三角形,
∴DE=AB,
根據(jù)三角形的三邊關(guān)系知BE+BD=AC+BD>DE=AB,
即AC+BD>AB.
當(dāng)D、B、E共線時,AC+BD=AB.
∴AC+BD≥AB.
點(diǎn)評:本題利用了:1、三角形的三邊關(guān)系;
2、平移的基本性質(zhì):
①平移不改變圖形的形狀和大;
②經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商品的進(jìn)價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).設(shè)每件商品的售價上漲x元,每個月的銷售量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)在銷量盡可能大的前提下,每件商品的售價定為多少元時,每個月的利潤恰為2400元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一個幾何體的三視圖,則該幾何體的體積為(  )
A、6B、8C、16D、24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

飛機(jī)的無風(fēng)航速為akm/h,風(fēng)速為25km/h.
(1)飛機(jī)順風(fēng)飛行4h的行程是多少千米?
(2)飛機(jī)逆風(fēng)飛行3h的行程是多少千米?
(3)兩個行程相差多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一個正數(shù)的平方根分別是3x-2和5x+6,求這個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

畫一條數(shù)軸,把-1
1
2
,0,3各數(shù)在數(shù)軸上表示出來,并比較它們的大小,用“<”號連接.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列運(yùn)算正確的是( 。
A、(-a23=-a6
B、(a-b)2=a2-b2
C、x2+x2=x4
D、3a2•2a2=6a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題
(1)已知a、b互為相反數(shù),c、d互為倒數(shù),m的絕對值是2,求
|a+b|
2m2+1
+4m-3cd的值.
(2)已知x+y=2xy,求
4x-5xy+4y
x+xy+y
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若|a|=3,|b|=2,且a<b,ab<0,求3a2b-[2ab2-(-3a2b-ab2)+ab]+3ab2的值.

查看答案和解析>>

同步練習(xí)冊答案