【題目】如圖,在△ABC中,∠C=90°,AC=3cm,BC=4cm. P、Q分別為AB、BC上的動(dòng)點(diǎn),點(diǎn)P從點(diǎn)A出發(fā)沿AB方向作勻速移動(dòng)的同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向向點(diǎn)C作勻速移動(dòng),移動(dòng)的速度均為1cm/s,設(shè)P、Q移動(dòng)的時(shí)間為t(0<t≤4).
(1)當(dāng)t為何值時(shí),△BPQ與△ABC相似;
(2)當(dāng)t為何值時(shí),△BPQ是等腰三角形.
【答案】(1)t=或時(shí),△BPQ與△ABC相似;(2)t=2.5或或.
【解析】試題分析:
(1)由已知條件易得AB=5,由于△BPQ和△ABC有公共角∠B,所以當(dāng)或時(shí),兩三角形相似,由此可列出方程解得t的值;
(2)如圖,由題意可知,需分三種情況討論:①BP=BQ時(shí),可直接列方程求得t的值;②BQ=PQ時(shí),過(guò)點(diǎn)Q作QE⊥AB于點(diǎn)E,再證△BQE∽△BAC,從而可利用相似三角形的性質(zhì)列比例式求出此時(shí)t的值;③PB=PQ時(shí),過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E,再證△PBE∽△ABC,從而可利用相似三角形的性質(zhì)列比例式求出此時(shí)t的值.
試題解析:
(1)∵在△ABC中,∠C=90°,AC=3cm,BC=4cm.
∴AB=(cm).
∵△BPQ和△ABC有公共角∠B,
∴①當(dāng)時(shí),△BPQ∽△BCA,由此可得: ,解得: ;
②當(dāng)時(shí),△BPQ∽△BAC,由此可得: ,解得: ;
∴當(dāng)或時(shí),△BPQ與△ABC相似;
(2)①如圖1,當(dāng)BP=BQ時(shí),△BPQ是等腰三角形,由題意可得: ,解得: ;
②如圖2,當(dāng)BQ=PQ時(shí),過(guò)點(diǎn)Q作QE⊥AB于點(diǎn)E,則BE=PE=BP=,∠BEQ=∠C=90°,
又∵∠B=∠B,
∴△BEQ∽△BCA,
∴,即 ,解得: ;
③如圖3,當(dāng)PB=PQ時(shí),過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E,則BE=EQ= ,∠BEP=∠C=90°,
又∵∠B=∠B,
∴△BEP∽△BCA,
∴,即,解得: ;
綜上所述,當(dāng), , 時(shí),△BPQ是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AM為⊙O的切線,A為切點(diǎn),BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了爭(zhēng)創(chuàng)全國(guó)文明衛(wèi)生城市,優(yōu)化城市環(huán)境,某市公交公司決定購(gòu)買10輛全新的混合動(dòng)力公交車,現(xiàn)有兩種型號(hào),它們的價(jià)格及年省油量如下表:
型 號(hào) | ||
價(jià)格(萬(wàn)元/輛) | ||
年省油量(萬(wàn)升/輛) | 2.4 | 2 |
經(jīng)調(diào)查,購(gòu)買一輛型車比購(gòu)買一輛型車多20萬(wàn)元,購(gòu)買2輛型車比購(gòu)買3輛型車少60萬(wàn)元.
(1)請(qǐng)求出和的值;
(2)若購(gòu)買這批混合動(dòng)力公交車(兩種車型都要有), 每年能節(jié)省的油量不低于22.4萬(wàn)升,請(qǐng)問(wèn)有幾種購(gòu)車方案?(不用一一列出)請(qǐng)求出最省錢的購(gòu)車方案所需的車款.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩個(gè)全等的直角三角形△ABD、△ACE拼在一起(圖(1)).令△ABD不動(dòng),
(1)若將△ACE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),連接DE,M是DE的中點(diǎn),連接MB、MC(圖(2)),證明:MB=MC.
(2)若將圖(1)中的CE向上平移,∠CAE不變,連接DE,M是DE的中點(diǎn),連接MB、MC(圖(3)),判斷MB、MC的數(shù)量關(guān)系,并說(shuō)明理由.
(3)在(2)中,若∠CAE的大小改變(圖(4)),其他條件不變,則(2)中的MB、MC的數(shù)量關(guān)系還成立嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年5月6日,中國(guó)第一條具有自主知識(shí)產(chǎn)權(quán)的長(zhǎng)沙磁浮線正式開(kāi)通運(yùn)營(yíng),該路線連接了長(zhǎng)沙火車南站和黃花國(guó)際機(jī)場(chǎng)兩大交通樞紐,沿線生態(tài)綠化帶走廊的建設(shè)尚在進(jìn)行中,屆時(shí)將給乘客帶來(lái)美的享受.星城渣土運(yùn)輸公司承包了某標(biāo)段的土方運(yùn)輸任務(wù),擬派出大、小兩種型號(hào)的渣土運(yùn)輸車運(yùn)輸土方,已知2輛大型渣土運(yùn)輸車與3輛小型渣土運(yùn)輸車一次共運(yùn)輸土方31噸,5輛大型渣土運(yùn)輸車與6輛小型渣土運(yùn)輸車一次共運(yùn)輸土方70噸.
(1)一輛大型渣土運(yùn)輸車和一輛小型渣土運(yùn)輸車一次各運(yùn)輸土方多少噸?
(2)該渣土運(yùn)輸公司決定派出大、小兩種型號(hào)的渣土運(yùn)輸車共20輛參與運(yùn)輸土方,若每次運(yùn)輸土方總量不少于148噸,且小型渣土運(yùn)輸車至少派出2輛,則有哪幾種派車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在中,是的中點(diǎn),是的中點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)求證:四邊形是菱形;
(3)若,求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D為BC邊上一點(diǎn).
(1)如圖①,在Rt△ABC中,∠C=90°,將△ABC沿著AD折疊,點(diǎn)C落在AB邊上.請(qǐng)用直尺和圓規(guī)作出點(diǎn)D(不寫作法,保留作圖痕跡);
(2)如圖②,將△ABC沿著過(guò)點(diǎn)D的直線折疊,點(diǎn)C落在AB邊上的E處.
①若DE⊥AB,垂足為E,請(qǐng)用直尺和圓規(guī)作出點(diǎn)D(不寫作法,保留作圖痕跡);
②若AB=,BC=3,∠B=45°,求CD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明在教學(xué)樓A處分別觀測(cè)對(duì)面實(shí)驗(yàn)樓CD底部的俯角為45°,頂部的仰角為37°,已知教學(xué)樓和實(shí)驗(yàn)樓在同一平面上,觀測(cè)點(diǎn)距地面的垂直高度AB為15m,求實(shí)驗(yàn)樓的垂直高度即CD長(zhǎng)(精確到1m).
參考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為直線x=1,點(diǎn)B坐標(biāo)為(-1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<-1或x>3.其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com