【題目】如圖,∠AOB30°,點P是∠AOB內(nèi)的一定點,且OP6,若點M,N分別是射線OA,OB上異于點O的動點,則△PMN周長的最小值是__________.
【答案】6;
【解析】
設點P關于OA的對稱點為C,關于OB的對稱點為D,當點M、N在CD上時,△PMN的周長最小.
解:分別作點P關于OA、OB的對稱點C、D,連接CD,分別交OA、OB于點M、N,連接OP、OC、OD、PM、PN.
∵點P關于OA的對稱點為C,關于OB的對稱點為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點P關于OB的對稱點為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=6.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=6.
故答案為:6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD的中點,點A關于BE的對稱點為G(G在矩形ABCD內(nèi)部),連接BG并延長交CD于F.
(1)如圖1,當AB=AD時,
①根據(jù)題意將圖1補全;
②直接寫出DF和GF之間的數(shù)量關系.
(2)如圖2,當AB≠AD時,如果點F恰好為DC的中點,求的值.
(3)如圖3,當AB≠AD時,如果DC=nDF,寫出求的值的思路(不必寫出計算結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),以下結論:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正確的是( )
A. ①②B. ③④C. ②③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC和△CDE都是等腰直角三角形,∠ACB=∠DCE=90°,且點A在ED的延長線上,以DE為直徑的⊙O與AB交于G、H兩點,連接BE.
(1)求證:BE是⊙O的切線;
(2)如圖②,連接OB、OC,若tan∠CAD=,試判斷四邊形BECO的形狀,請說明理由;
(3)在(2)的條件下,若BF=,請你求出HG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的“工兵”、“連長”、“地雷”比較大小,共有6個棋子,分別為1個“工兵”,2個“連長”,3個“地雷”游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機各摸一個棋子進行比賽,先摸者摸出的棋不放回;②“工兵”勝“地雷”,“地雷”勝“連長”,“連長”勝“工兵”;③相同棋子不分勝負.
(1)若小方先摸,則小方摸到“排長”的事件是 ;若小方先摸到了“連長”,小輝在剩余的5個棋子中隨機摸一個,則這一輪中小方勝小輝的概率為 .
(2)如果先拿走一個“連長”,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機摸一個,求這一輪中小方獲勝的概率 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=x+1的圖象l與y軸交于點C,A1的坐標為(1,0),點B1在直線l上,且A1B1平行于y軸,連接CA1、OB1交于點P1,過點A1作A1B2∥OB1交直線l于點B2,過點B1作B1A2∥CA1交x軸于點A2,A1B2與B1A2交于點P2,……,按此進行下去,則點P2019的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(﹣3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點的坐標為( )
A. (8076,0)B. (8064,0)C. (8076,)D. (8064,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系中,已知拋物線與x軸交于A,B兩點,與y軸交于點C,直線l經(jīng)過坐標原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標分別為(-2,0),(6,-8).
(1)求拋物線的函數(shù)表達式,并分別求出點B和點E的坐標;
(2)試探究拋物線上是否存在點F,使≌,若存在,請直接寫出點F的坐標;若不存在,請說明理由;
(3)若點P是y軸負半軸上的一個動點,設其坐標為(0,m),直線PB與直線l交于點Q.試探究:當m為何值時,是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com