【題目】如圖所示,二次函數(shù)的圖象的對稱軸是直線x=1,且經(jīng)過點(diǎn)(0,2).有下列結(jié)論:ac0;a+c2-b; x=-5x=7時函數(shù)值相等.其中正確的結(jié)論有

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】∵拋物線開口向下,∴a<0,

∵拋物線與y軸的交點(diǎn)在x軸上方,∴c>0,ac<0,所以①錯誤;

∵拋物線與x軸有2個交點(diǎn),∴b24ac>0,所以②正確;

∵拋物線的對稱軸為直線x=1,x=1時,y最大,即a+b+c>2,a+c>2b,所以③錯誤;

x=2時,y<0,4a2b+c<0,而=1c=2,4a+4a+2<0,a<,所以④正確;

∵拋物線的對稱軸為直線x=1,x=5x=7時函數(shù)值相等,所以⑤正確.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條東西方向筆直的沿湖道路l上有A、B兩個游船碼頭,觀光島嶼C在碼頭A的北偏東60°方向、在碼頭B的北偏西45°方向,AC4千米.那么碼頭AB之間的距離等于_____千米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)AAB⊥ON,垂點(diǎn)為點(diǎn)B,AB=3厘米,OB=4厘米,動點(diǎn)E、F同時從O點(diǎn)出發(fā),點(diǎn)E1.5厘米/秒的速度沿ON方向運(yùn)動,點(diǎn)F2厘米/秒的速度沿OM方向運(yùn)動,EFOA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時,點(diǎn)F隨之停止運(yùn)動。設(shè)運(yùn)動時間為t秒(t>0)。

(1)當(dāng)t=1秒時,ΔEOF與ΔABO是否相似?請說明理由。

(2)在運(yùn)動過程中,不論t取何值時,總有EF⊥OA,為什么?

3)連接AF,在運(yùn)動過程中,是否存在某一時刻t,使得SΔAEF=S四邊形ABOF ?若存在,請求出此時t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成相應(yīng)的任務(wù):

全等四邊形根據(jù)全等圖形的定義可知:四條邊分別相等,四個角也分別相等的兩個四邊形全等.探索三角形全等的條件時,我們把兩個三角形中一條邊相等一個角相等稱為一個條件.智慧小組的同學(xué)類比探索三角形全等條件的方法,探索四邊形全等的條件,進(jìn)行了如下思考:如圖 1,四邊形ABCD和四邊形A'B'C'D'中,連接對角線AC,A'C',這樣兩個四邊形全等的問題就轉(zhuǎn)化為ABCA'B'C'ACD A 'C 'D '的問題.若先給定ABCA'B'C'的條件,只要再增加2個條件使ACDA'C'D'即可推出兩個四邊形中四條邊分別相等,四個角也分別相等,從而說明兩個四邊形全等.

按照智慧小組的思路,小明對圖1中的四邊形ABCD和四邊形A'B'C'D'先給出如下條件:ABA'B',∠B=∠B',BCB'C',小亮在此基礎(chǔ)上又給出“ADA'D',CDC'D'兩個條件,他們認(rèn)為滿足這五個條件能得到四邊形ABCD四邊形A'B'C'D'”.

(1)請根據(jù)小明和小亮給出的條件,說明四邊形ABCD四邊形A'B'C'D'的理由;

(2)請從下面A,B兩題中任選一題作答,我選擇______.

A.在材料中小明所給條件的基礎(chǔ)上,小穎又給出兩個條件“ADA'D',∠BCD=∠B'C'D',滿足這五個條件_______(不能”)得到四邊形 ABCD四邊形A'B'C'D'”.

B.在材料中小明所給條件的基礎(chǔ)上,再添加兩個關(guān)于原四邊形的條件(要求:不同于小亮的條件),使四邊形ABCD四邊形A'B'C'D',你添加的條件是:_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與函數(shù)的圖象交于,兩點(diǎn),軸于C軸于D

k的值;

根據(jù)圖象直接寫出x的取值范圍;

是線段AB上的一點(diǎn),連接PC,PD,若面積相等,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料,回答問題:

解方程x45x2+4=0,這是一個一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:

設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y25y+4=0 ①,解得y1=1y2=4

當(dāng)y=1時,x2=1,x=±1;

當(dāng)y=4時,x2=4x=±2;

∴原方程有四個根:x1=1x2=1,x3=2,x4=2

在由原方程得到方程①的過程中,利用換元法達(dá)到降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,請利用上述方法解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形記作在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,先將向上平移3個單位長度,再向右平移2個單位長度,得到

三個頂點(diǎn)的坐標(biāo)分別是:__________________,

在圖中畫出

平移后的三個頂點(diǎn)坐標(biāo)分別為:__________________

y軸有一點(diǎn)P,使面積相等,則P點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲和乙騎摩托車分別從某大道上相距6000米的A、B兩地同時出發(fā),相向而行,勻速行駛一段時間后,到達(dá)C地的甲發(fā)現(xiàn)摩托車出了故障,立即停下電話通知乙,乙接到電話后立即以出發(fā)時速度的倍向C地勻速騎行,到達(dá)C地后,用5分鐘修好了甲摩托車,然后乙仍以出發(fā)時速度的倍勻速向終點(diǎn)A地騎行,甲仍以原來速度向B地勻速騎行,2分鐘后,發(fā)現(xiàn)乙的一件維修工具落在了自己車上,于是立即掉頭并以原速度倍的速度勻速返回(此時乙未到達(dá)A地).在這個過程中,兩人相距的路程y(米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示(甲與乙打、接電話及掉頭時間忽略不計(jì))則當(dāng)乙到達(dá)A地時,甲離A地的距離為 ________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案