【題目】 如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A,B兩點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)E是直角△ABC斜邊AB上一動(dòng)點(diǎn)(點(diǎn)A、B除外),過(guò)點(diǎn)E作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)F,當(dāng)線(xiàn)段EF的長(zhǎng)度最大時(shí),求點(diǎn)E、F的坐標(biāo);
(3)在(2)的條件下:在拋物線(xiàn)上是否存在一點(diǎn)P,使△EFP是以EF為直角邊的直角三角形?若存在,請(qǐng)求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2﹣2x﹣3;(2)點(diǎn)E(,),F(,);(3)存在,P1(,),P2(,),P3(,).
【解析】
(1)根據(jù)AC=BC,求出BC的長(zhǎng),進(jìn)而得到點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求得拋物線(xiàn)的解析式;
(2)利用待定系數(shù)法求出直線(xiàn)AB的解析式,用含m的式表示出E,F的坐標(biāo),求出EF的長(zhǎng)度最大時(shí)m的值,即可求得E,F的坐標(biāo);
(3)分兩種情況:∠E-90°和∠F=90°,分別得到點(diǎn)P的縱坐標(biāo),將縱坐標(biāo)代入拋物線(xiàn)解析式,即可求得點(diǎn)P的值.
解:(1)∵OA=1,OC=4,AC=BC,
∴BC=5,
∴A(﹣1,0),B(4,5),
拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),
∴,解得:,
∴y=x2﹣2x﹣3;
(2)設(shè)直線(xiàn)AB解析式為:y=kx+b,
直線(xiàn)經(jīng)過(guò)點(diǎn)A,B兩點(diǎn),
∴,解得:,
∴直線(xiàn)AB的解析式為:y=x+1,
設(shè)點(diǎn)E的坐標(biāo)為(m,m+1),則點(diǎn)F(m,m2﹣2m﹣3),
∴EF=m+1﹣m2+2m+3=﹣m2+3m+4=﹣(m﹣)2+,
∴當(dāng)EF最大時(shí),m=,
∴點(diǎn)E(,),F(,);
(3)存在.
①當(dāng)∠FEP=90°時(shí),點(diǎn)P的縱坐標(biāo)為,
即x2﹣2x﹣3=,解得:x1=,x2=,
∴點(diǎn)P1(,),P2(,),
②當(dāng)∠EFP=90°時(shí),點(diǎn)P的縱坐標(biāo)為,
即x2﹣2x﹣3=,解得:x1=,x2=(舍去),
∴點(diǎn)P3(,),
綜上所述,P1(,),P2(,),P3(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購(gòu)置一批電子白板和一批筆記本電腦,經(jīng)投標(biāo),購(gòu)買(mǎi)1塊電子白板比買(mǎi)3臺(tái)筆記本電腦多3000元,購(gòu)買(mǎi)4塊電子白板和5臺(tái)筆記本電腦共需80000元.
(1)求購(gòu)買(mǎi)1塊電子白板和一臺(tái)筆記本電腦各需多少元?
(2)根據(jù)該校實(shí)際情況,需購(gòu)買(mǎi)電子白板和筆記本電腦的總數(shù)為396,要求購(gòu)買(mǎi)的總費(fèi)用不超過(guò)2700000元,并購(gòu)買(mǎi)筆記本電腦的臺(tái)數(shù)不超過(guò)購(gòu)買(mǎi)電子白板數(shù)量的3倍,該校有哪幾種購(gòu)買(mǎi)方案?
(3)上面的哪種購(gòu)買(mǎi)方案最省錢(qián)?按最省錢(qián)方案購(gòu)買(mǎi)需要多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究:
如圖,將拋物線(xiàn)向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度后,得到的拋物線(xiàn),平移后的拋物線(xiàn)與軸分別交于,兩點(diǎn),與軸交于點(diǎn).拋物線(xiàn)的對(duì)稱(chēng)軸與拋物線(xiàn)交于點(diǎn).
(1)請(qǐng)你直接寫(xiě)出拋物線(xiàn)的解析式;(寫(xiě)出頂點(diǎn)式即可)
(2)求出,,三點(diǎn)的坐標(biāo);
(3)在軸上存在一點(diǎn),使的值最小,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=5,BC=4,點(diǎn)E,F分別在邊BC,AC上,沿EF所在的直線(xiàn)折疊∠C,使點(diǎn)C的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,若△EFC和△ABC相似,則BD的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是⊙的直徑,點(diǎn)分別在兩個(gè)半圓上(不與點(diǎn)重合),的長(zhǎng)分別是關(guān)于的方程的兩個(gè)實(shí)數(shù)根.
(1)的值為_____;
(2)連接三者之間的等量關(guān)系為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△A1B1C1;
(2)畫(huà)出△ABC向上平移5個(gè)單位后的△A2B2C2,并求出平移過(guò)程中△ABC掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問(wèn)題:如圖1,在中,,,,點(diǎn)為邊上的任意一點(diǎn).將沿過(guò)點(diǎn)的直線(xiàn)折疊,使點(diǎn)落在斜邊上的點(diǎn)處.問(wèn)是否存在是直角三角形?若不存在,請(qǐng)說(shuō)明理由;若存在,求出此時(shí)的長(zhǎng)度.
探究展示:勤奮小組很快找到了點(diǎn)、的位置.
如圖2,作的角平分線(xiàn)交于點(diǎn),此時(shí)沿所在的直線(xiàn)折疊,點(diǎn)恰好在上,且,所以是直角三角形.
問(wèn)題解決:
(1)按勤奮小組的這種折疊方式,的長(zhǎng)度為 .
(2/span>)創(chuàng)新小組看完勤奮小組的折疊方法后,發(fā)現(xiàn)還有另一種折疊方法,請(qǐng)?jiān)趫D3中畫(huà)出來(lái).
(3)在(2)的條件下,求出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=a(x-1)2+k與x軸兩個(gè)交點(diǎn)間的距離為2,將拋物線(xiàn)y=a(x-1)2+k向上平移n個(gè)單位,平移后的拋物線(xiàn)經(jīng)過(guò)點(diǎn)(m,n),則m的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=ax2+bx+c的圖象與x軸分別交于A、B兩點(diǎn),與y軸交于點(diǎn)C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的兩根為﹣8、2.
(1)求二次函數(shù)的解析式;
(2)直線(xiàn)l繞點(diǎn)A以AB為起始位置順時(shí)針旋轉(zhuǎn)到AC位置停止,l與線(xiàn)段BC交于點(diǎn)D,P是AD的中點(diǎn).
①求點(diǎn)P的運(yùn)動(dòng)路程;
②如圖2,過(guò)點(diǎn)D作DE垂直x軸于點(diǎn)E,作DF⊥AC所在直線(xiàn)于點(diǎn)F,連結(jié)PE、PF,在l運(yùn)動(dòng)過(guò)程中,∠EPF的大小是否改變?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,連結(jié)EF,求△PEF周長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com