【題目】“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.﹣﹣蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x= ﹣2實數(shù)根的情況是( )
A.有三個實數(shù)根
B.有兩個實數(shù)根
C.有一個實數(shù)根
D.無實數(shù)根
【答案】C
【解析】解:將方程變形 ﹣1=(x﹣1)2,
設(shè)y1= ﹣1,y2=(x﹣1)2,在坐標(biāo)系中畫出兩個函數(shù)的圖象如圖所示:
可看出兩個函數(shù)圖象有一個交點(1,0).
故方程x2﹣2x= ﹣2有一個實數(shù)根.
所以答案是:C.
【考點精析】關(guān)于本題考查的拋物線與坐標(biāo)軸的交點,需要了解一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期五小穎放學(xué)步行從學(xué)校回家,當(dāng)她走了一段路后,想起要去買彩筆做畫報,于是原路返回到剛經(jīng)過的文具用品店,買到彩筆后繼續(xù)往家走.如圖是她離家的距離與所用時間的關(guān)系示意圖,請根據(jù)圖中提供的信息回答下列問題:
(1)小穎家與學(xué)校的距離是 米;
(2)表示的實際意義是 ;
(3)小穎本次從學(xué);丶业恼麄過程中,走的路程是多少米?
(4)買到彩筆后,小穎從文具用品店回到家步行的速度是多少米/分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象和矩形ABCD在第二象限,AD平行于x軸,且AB=2,AD=4,點C的坐標(biāo)為(﹣2,4).
(1)直接寫出A、B、D三點的坐標(biāo);
(2)若將矩形只向下平移,矩形的兩個頂點恰好同時落在反比例函數(shù)的圖象上,求反比例函數(shù)的解析式和此時直線AC的解析式y=mx+n.并直接寫出滿足的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線11∥12,且13和11、12分別交于A、B兩點,點P在直線AB上.
(1)試猜想寫出∠1,∠2,∠3之間的關(guān)系式,并加以證明.
(2)如果點P在A、B兩點外側(cè)(點P和A、B不重合)運動時,試畫出圖形,寫出∠1,∠2,∠3之間的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(3)班在一次班會課上,就“遇見路人摔倒后如何處理”的主題進行討論,并對全班50名學(xué)生的處理方式進行統(tǒng)計,得出相關(guān)統(tǒng)計表和統(tǒng)計圖(如圖)
組別 | A | B | C | D |
處理方式 | 迅速離開 | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數(shù) | m | 30 | n | 5 |
請根據(jù)表圖所提供的信息回答下列問題:
(1)統(tǒng)計表中的m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)若該校有3000名學(xué)生,請據(jù)此估計該校學(xué)生采取“馬上救助”方式的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;
(2)C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;
(3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程:
已知:如圖,∠D=110°,∠EFD=70°,∠1=∠2,
求證:∠3=∠B
證明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 內(nèi)錯角相等,兩直線平行)
∴EF∥_____ ( )
∴∠3=∠B(兩直線平行,同位角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:(1)兩直線平行,內(nèi)錯角相等;(2)如果m是無理數(shù),那么m是無限小數(shù);(3)64的立方根是8;(4)同旁內(nèi)角相等,兩直線平行;(5)如果a是實數(shù),那么是無理數(shù).(6)平面內(nèi)的一條直線和兩條平行線中的一條相交,則它與另一條也相交;(7)直線外一點到這條直線的垂線段,叫做該點到直線的距離;(8)過一點作已知直線的平行線,有且只有一條.其中是真命題的有 ( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com