【題目】(10分)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象和矩形ABCD在第二象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)C的坐標(biāo)為(﹣2,4).
(1)直接寫出A、B、D三點(diǎn)的坐標(biāo);
(2)若將矩形只向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,求反比例函數(shù)的解析式和此時(shí)直線AC的解析式y=mx+n.并直接寫出滿足的x取值范圍.
【答案】(1)A(﹣6,6),B(﹣6,4),D(﹣2,6);(2).
【解析】試題分析:(1)首先根據(jù)矩形的性質(zhì)可知:點(diǎn)A、B的橫坐標(biāo)相同,B、C的縱坐標(biāo)相同,A、D的縱坐標(biāo)相同,C、D的橫坐標(biāo)相同,據(jù)此很容易寫出點(diǎn)B、C、D的坐標(biāo);
(2)根據(jù)題意可知:平移后的矩形中B、D兩點(diǎn)在y=kx的圖象上;
設(shè)平移距離為a,則可以表示出點(diǎn)B′,點(diǎn)D′的坐標(biāo),將點(diǎn)B′、D′的坐標(biāo)代入函數(shù)解析式,即可求出a的值,,進(jìn)而得到A′、B′、C′、D′的坐標(biāo);將B′的坐標(biāo)代入y=kx中得到反比例函數(shù)的解析式,將A′、C′代入直線中得到直線的解析式,據(jù)此相信你能解答本題了.
解:(1)A(﹣6,6),B(﹣6,4),D(﹣2,6);
(2)如圖,矩形ABCD向下平移后得到矩形,
設(shè)平移距離為a,則B′(﹣6,4﹣a),D′(﹣2,6﹣a)∵點(diǎn)B′,點(diǎn)D′在y=的圖象上,
∴﹣6(4﹣a)=﹣2(6﹣a),
解得a=3,
∴點(diǎn)A′(﹣6,3),B′(﹣6,1),C′(﹣2,1),D′(﹣2,3),
將點(diǎn)B′(﹣6,1)代入y=得:k=﹣6,
∴反比例函數(shù)的解析式為y=﹣.
將A′(﹣6,3),C′(﹣2,1)點(diǎn)代入y=mx+n中得:,
解得:,
所以它的解析式為:
滿足的x取值范圍即是的取值范圍,即:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出BC邊上的高線AE;
(3)利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:△A′B′C′的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀后填空:某家燈具廠為了比較甲、乙兩種燈的使用壽命,各抽出8支做試驗(yàn),結(jié)果如下(單位:小時(shí)).
甲:457,438,460,443,464,459,444,451;
乙:466,455,467,439,459,452,464,438.
試說明哪種燈的使用壽命長?哪種燈的質(zhì)量比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個(gè)數(shù)是 ( )
①若三條線段的比為1:1:,則它們組成一個(gè)等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個(gè)角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個(gè)直角梯形。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點(diǎn)H為垂足,設(shè)AB=x,AD=y,則y關(guān)于x的函數(shù)關(guān)系用圖象大致可以表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程:
如圖所示,直線AD與AB,CD分別相交于點(diǎn)A,D,與EC,BF分別相交于點(diǎn)H,G,已知∠1=∠2,∠B=∠C.
求證:∠A=∠D.
證明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.﹣﹣蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x= ﹣2實(shí)數(shù)根的情況是( )
A.有三個(gè)實(shí)數(shù)根
B.有兩個(gè)實(shí)數(shù)根
C.有一個(gè)實(shí)數(shù)根
D.無實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后得到△EDC,此時(shí)點(diǎn)D在AB邊上,斜邊DE交AC邊于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為( )
A.30,2
B.60,2
C.60,
D.60,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com