【題目】如圖,已知一次函數(shù)y=mx+3的圖象經(jīng)過(guò)點(diǎn)A(2,6),B(n,-3).求:

(1)m,n的值;

(2)OAB的面積.

【答案】(1) n=-4;(2) 9.

【解析】1)根據(jù)點(diǎn)A的坐標(biāo)利用待定系數(shù)法可求出m值,進(jìn)而可得出一次函數(shù)解析式,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出n值;

(2)令直線(xiàn)ABy軸的交點(diǎn)為C,由直線(xiàn)解析式可求得點(diǎn)C(0,3),再根據(jù)SOAB=SOCA+SOCB進(jìn)行求解即可.

(1)∵一次函數(shù)y=mx+3的圖象經(jīng)過(guò)點(diǎn)A(2,6),

6=2m+3,m=,

∴一次函數(shù)的表達(dá)式為y=x+3.

又∵一次函數(shù)y=x+3的圖象經(jīng)過(guò)點(diǎn)B(n,-3),

-3=n+3,n=-4.

(2)令直線(xiàn)ABy軸的交點(diǎn)為C,當(dāng)x=0時(shí),y=3,C(0,3),

SOAB=SOCA+SOCB×3×2+×3×|-4|=9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D,C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),直線(xiàn)AD與y軸相交于點(diǎn)E.

(1)求直線(xiàn)AD的解析式;
(2)如圖1,直線(xiàn)AD上方的拋物線(xiàn)上有一點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,作FH平行于x軸交直線(xiàn)AD于點(diǎn)H,求△FGH周長(zhǎng)的最大值;
(3)如圖2,點(diǎn)M是拋物線(xiàn)的頂點(diǎn),點(diǎn)P是y軸上一動(dòng)點(diǎn),點(diǎn)Q是坐標(biāo)平面內(nèi)一點(diǎn),四邊形APQM是以PM為對(duì)角線(xiàn)的平行四邊形,點(diǎn)Q′與點(diǎn)Q關(guān)于直線(xiàn)AM對(duì)稱(chēng),連接M Q′,P Q′.當(dāng)△PM Q′與□APQM重合部分的面積是APQM面積的 時(shí),求APQM面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在下列橫線(xiàn)上: 銷(xiāo)售單價(jià)x(元);
銷(xiāo)售量y(件)
銷(xiāo)售玩具獲得利潤(rùn)w(元);
(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)x應(yīng)定為多少元.
(3)在(1)問(wèn)條件下,若玩具廠(chǎng)規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2k+1)x+4(k﹣ )=0
(1)求證:無(wú)論k取何值,這個(gè)方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長(zhǎng)a=4,另兩邊b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,正比例函數(shù)y=kx與一次函數(shù)y=-kx-k(k0)的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)自然數(shù)的立方,可以分裂成若干個(gè)連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個(gè)、3個(gè)和4個(gè)連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來(lái)進(jìn)行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x=1,y=x2+4xy+4y2的值是

A. 2 B. 4 C. 32 D. 12

【答案】B

【解析】解析:x2+4xy+4y2=x+2y2==4.故選B.

型】單選題
結(jié)束】
9

【題目】下列因式分解,正確的是( )

A. x2y2-z2=x2y+z)(y-z B. -x2y+4xy-5y=-yx2+4x+5

C. x+22-9=x+5)(x-1 D. 9-12a+4a2=-3-2a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】顧琪在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是她在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

顧琪總共剪開(kāi)了________條棱.

現(xiàn)在顧琪想將剪斷的重新粘貼到上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為她應(yīng)該將剪斷的紙條粘貼到中的什么位置?請(qǐng)你幫助她在上補(bǔ)全.

已知顧琪剪下的長(zhǎng)方體的長(zhǎng)、寬、高分別是、,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在社會(huì)主義新農(nóng)村建設(shè)中,衢州某鄉(xiāng)鎮(zhèn)決定對(duì)A、B兩村之間的公路進(jìn)行改造,并有甲工程隊(duì)從A村向B村方向修筑,乙工程隊(duì)從B村向A村方向修筑.已知甲工程隊(duì)先施工3天,乙工程隊(duì)再開(kāi)始施工.乙工程隊(duì)施工幾天后因另有任務(wù)提前離開(kāi),余下的任務(wù)有甲工程隊(duì)單獨(dú)完成,直到公路修通.下圖是甲乙兩個(gè)工程隊(duì)修公路的長(zhǎng)度y(米)與施工時(shí)間x(天)之間的函數(shù)圖象,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)乙工程隊(duì)每天修公路多少米?

(2)分別求甲、乙工程隊(duì)修公路的長(zhǎng)度y(米)與施工時(shí)間x(天)之間的函數(shù)關(guān)系式.

(3)若該項(xiàng)工程由甲、乙兩工程隊(duì)一直合作施工,需幾天完成?

查看答案和解析>>

同步練習(xí)冊(cè)答案