【題目】如圖,在平行四邊形中,分別是和的平分線,若添加以下一個(gè)條件,仍無法判斷四邊形為菱形,則這個(gè)條件是( )
A.B.
C.D.是的平分線
【答案】C
【解析】
根據(jù)平行四邊形性質(zhì)推出∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,求出∠BAE=∠DCF,證△ABE≌△CDF,推出AE=CF,BE=DF,求出AF=CE,得出四邊形AECF是平行四邊形,再根據(jù)菱形的判定判斷即可.
∵四邊形ABCD是平行四邊形,
∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,
∵AE,CF分別是∠BAD和∠BCD的平分線,
∴∠DCF=∠DCB,∠BAE=∠BAD,
∴∠BAE=∠DCF,
∵在△ABE和△CDF中
,
∴△ABE≌△CDF,
∴AE=CF,BE=DF,
∵AD=BC,
∴AF=CE,
∴四邊形AECF是平行四邊形,
A、∵四邊形AECF是平行四邊形,AE=AF,
∴平行四邊形AECF是菱形,故本選項(xiàng)正確;
B、∵EF⊥AC,四邊形AECF是平行四邊形,
∴平行四邊形AECF是菱形,故本選項(xiàng)正確;
C、根據(jù)和平行四邊形AECF不能推出四邊形是菱形,故本選項(xiàng)錯(cuò)誤;
D、∵四邊形AECF是平行四邊形,
∴AF∥BC,
∴∠FAC=∠ACE,
∵AC平分∠EAF,
∴∠FAC=∠EAC,
∴∠EAC=∠ECA,
∴AE=EC,
∵四邊形AECF是平行四邊形,
∴四邊形AECF是菱形,故本選項(xiàng)正確;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(探索發(fā)現(xiàn))
如圖1,在正方形ABCD中,點(diǎn)M,N分別是邊BC,CD上的點(diǎn),∠MAN=45°,若將△DAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周長為8,則正方形ABCD的邊長為 .
(2)(類比延伸)
如圖2,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,點(diǎn)M,N分別在邊BC,CD上的點(diǎn),∠MAN=60°,請(qǐng)判斷線段BM,DN,MN之間的數(shù)量關(guān)系,并說明理由.
(3)(拓展應(yīng)用)
如圖3,在四邊形ABCD中,AB=AD=2,∠ADC=120°,點(diǎn)M,N分別在邊BC,CD上,連接AM,MN,AN,△ABM是等邊三角形,AM⊥AD于點(diǎn)A,∠DAN=15°,請(qǐng)直接寫出△CMN的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若一個(gè)三角形一條邊上的高等于這條邊長的一半,則稱該三角形為“半高”三角形,這條高稱為“半高”.
(1)如圖1,中,,,點(diǎn)在上,于點(diǎn),于點(diǎn),連接,求證: 是“半高”三角形;
(2)如圖2,是“半高”三角形,且邊上的高是“半高”,點(diǎn)在上,交于點(diǎn),于點(diǎn),于點(diǎn).
①請(qǐng)?zhí)骄?/span>,,之間的等量關(guān)系,并說明理由;
②若的面積等于16,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)與二次函數(shù)的圖象的一個(gè)交點(diǎn)坐標(biāo)為,另一個(gè)交點(diǎn)在軸上,點(diǎn)為軸右側(cè)拋物線上的一動(dòng)點(diǎn).
(1)求此二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)位于直線上方的拋物線上時(shí),求面積的最大值;
(3)當(dāng)此拋物線在點(diǎn)與點(diǎn)之間的部分(含點(diǎn)和點(diǎn))的最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為9時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo)和的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(-4,-1)和B(a,2).
(1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo).
(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸為.給出以下結(jié)論:①;②;③;④.其中,正確的結(jié)論有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖題:
(1)在如圖所示的方格紙中,經(jīng)過線段AB外一點(diǎn)C,不用量角器與三角尺,僅用直尺,畫線段AB的垂線CE和平行線CH.
(2)判斷CE、CH的位置關(guān)系是 .
(3)連接AC和BC,若小正方形的邊長為a,求三角形ABC的面積.(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點(diǎn)O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動(dòng)點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長交線段AE于點(diǎn)Q,QR⊥BD,垂足為點(diǎn)R.
①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化.若變化,請(qǐng)說明理由;若不變,求出四邊形PQED的面積;
②當(dāng)線段PB的長為何值時(shí),△PQR與△BOC相似.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com