【題目】如圖所示平面直角坐標(biāo)系中,點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B在第一象限,BC=BA,∠ABC=90°,反比例函數(shù)y=.(x>0)的圖象經(jīng)過點(diǎn)B,若OB=2,則k的值為_____.
【答案】4
【解析】
作BD⊥x軸于D,BE⊥y軸于E,則四邊形ODBE是矩形,利用AAS證得△ABD≌△CBE,即可證得BD=BE,然后根據(jù)勾股定理求得B的坐標(biāo),代入y=.(x>0)即可求得k的值.
如圖,作BD⊥x軸于D,BE⊥y軸于E,
∴四邊形ODBE是矩形,
∴∠DBE=90°,
∵∠ABC=90°,
∴∠ABD=∠CBE,
在△ABD和△CBE中
∴△ABD≌△CBE(AAS),
∴BE=BD,
∴四邊形ODBE是正方形,
∵OB=2,
根據(jù)勾股定理求得OD=BD=2,
∴B(2,2),
∵反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B,
∴k=2×2=4,
故答案為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象分別交于M,N兩點(diǎn),已知點(diǎn)M(-2,m).
(1)求反比例函數(shù)的表達(dá)式;
(2)點(diǎn)P為y軸上的一點(diǎn),當(dāng)∠MPN為直角時(shí),直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,以BC為底邊向正方形外部作等腰直角三角形BCE,連接AE,分別交BD,BC于點(diǎn)F,G,則下列結(jié)論:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正確的有( ).
A.①③B.②④C.①②D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AE⊥BD于點(diǎn)E,點(diǎn)P是邊AD上一點(diǎn).
(1)若BP平分∠ABD,交AE于點(diǎn)G,PF⊥BD于點(diǎn)F,如圖①,證明四邊形AGFP是菱形;
(2)若PE⊥EC,如圖②,求證:AEAB=DEAP;
(3)在(2)的條件下,若AB=1,BC=2,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成相應(yīng)的學(xué)習(xí)任務(wù):如圖(1)在線段AB上找一點(diǎn)C,C把AB分為AC和BC兩條線段,其中AC>BC.若AC,BC,AB滿足關(guān)系AC2=BCAB.則點(diǎn)C叫做線段AB的黃金分割點(diǎn),這時(shí)=≈0.618,人們把叫做黃金分割數(shù),我們可以根據(jù)圖(2)所示操作方法我到線段AB的黃金分割點(diǎn),操作步驟和部分證明過程如下:
第一步,以AB為邊作正方形ABCD.
第二步,以AD為直徑作⊙F.
第三步,連接BF與⊙F交于點(diǎn)G.
第四步,連接DG并延長(zhǎng)與AB交于點(diǎn)E,則E就是線段AB的黃金分割點(diǎn).
證明:連接AG并延長(zhǎng),與BC交于點(diǎn)M.
∵AD為⊙F的直徑,
∴∠AGD=90°,
∵F為AD的中點(diǎn),
∴DF=FG=AF,
∴∠3=∠4,∠5=∠6,
∵∠2+∠5=90°,∠5+∠4=90°,
∴∠2=∠4=∠3=∠1,
∵∠EBG=∠GBA,
∴△EBG∽△GBA,
∴=,
∴BG2=BEAB…
任務(wù):
(1)請(qǐng)根據(jù)上面操作步驟與部分證明過程,將剩余的證明過程補(bǔ)充完整;(提示:證明BM=BG=AE)
(2)優(yōu)選法是一種具有廣泛應(yīng)用價(jià)值的數(shù)學(xué)方法,優(yōu)選法中有一種0.618法應(yīng)用了黃金分割數(shù).為優(yōu)選法的普及作出重要貢獻(xiàn)的我國(guó)數(shù)學(xué)家是 (填出下列選項(xiàng)的字母代號(hào))
A.華羅庚
B.陳景潤(rùn)
C.蘇步青
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG、AF分別交DE于點(diǎn)M和點(diǎn)N,則線段MN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為的直徑,,為上一動(dòng)點(diǎn)(不與、重合).
(1)如圖1,若平分,連接交于點(diǎn).①求證:;②若,求的長(zhǎng);
(2)如圖2,若繞點(diǎn)順時(shí)針旋轉(zhuǎn)得,連接.求證:為的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,點(diǎn)E,F分別在邊AB,CD上,AD∥EF∥BC,EF與BD交于點(diǎn)G,AD=5,BC=10,=.
(1)求EF的長(zhǎng);
(2)設(shè)=,=,那么= ,= .(用向量、表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com