【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點O旋轉(zhuǎn),分別交邊AD、BC于點E、F,點P是邊DC上的一個動點,且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
【答案】(1)PC=3﹣x,F(xiàn)C=x;(2)當(dāng)x=時,△PEF面積的最小值為;(3)PE⊥PF不成立理由見解析.
【解析】
(1)由矩形的性質(zhì)可得AD∥BC,DC=AB=3,AO=CO,可證△AEO≌△CFO,可得AE=CF=x,由DP=AE=x,可得PC=3﹣x;
(2)由S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,可得S△EFP=x2﹣x+6=(x﹣)2+,根據(jù)二次函數(shù)的性質(zhì)可求△PEF面積的最小值;
(3)若PE⊥PF,則可證△DPE≌△CFP,可得DE=CP,即3﹣x=4﹣x,方程無解,則不存在x的值使PE⊥PF.
(1)∵四邊形ABCD是矩形
∴AD∥BC,DC=AB=3,AO=CO
∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF
∴△AEO≌△CFO(ASA)
∴AE=CF
∵AE=x,且DP=AE
∴DP=x,CF=x,DE=4﹣x,
∴CP=3﹣x,PC=CD﹣DP=3﹣x
故答案為:3﹣x,x
(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,
∴S△EFP=
=x2﹣x+6=(x﹣)2+
∴當(dāng)x=時,△PEF面積的最小值為.
(3)不成立
理由如下:若PE⊥PF,則∠EPD+∠FPC=90°
又∵∠EPD+∠DEP=90°
∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°
∴△DPE≌△CFP(AAS)
∴DE=CP
∴3﹣x=4﹣x
則方程無解,
∴不存在x的值使PE⊥PF,
即PE⊥PF不成立.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點M,交AB于點N,連接BM.
(1)求m的值和反比例函數(shù)的表達式;
(2)觀察圖象,直接寫出當(dāng)x>0時不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,AC=8,將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°到線段AD.△EFG由△ABC沿CB方向平移得到,且直線EF過點D.
(I)求∠1的大。
(Ⅱ)求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,“在初中數(shù)學(xué)教學(xué)候總使用計算器是否直接影響學(xué)生計算能力的發(fā)展”這一問題受到了廣泛關(guān)注,為此,某校隨機調(diào)查了n名學(xué)生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
n名學(xué)生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表
看法 | 沒有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 40 | 60 | m |
(1)求n的值;
(2)統(tǒng)計表中的m= ;
(3)估計該校1800名學(xué)生中認為“影響很大”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠C=72°,△ABC繞點B逆時針旋轉(zhuǎn),當(dāng)點C的對應(yīng)點C1落在邊AC上時,設(shè)AC的對應(yīng)邊A1C1與AB的交點為E,則∠BEC1=___°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D都在格點上.
(Ⅰ)AC的長為 ;
(Ⅱ)將矩形ABCD繞點A順時針旋轉(zhuǎn)得矩形AEFG,其中,點C的對應(yīng)點F落在格線AD的延長線上,請用無刻度的直尺在網(wǎng)格中畫出矩形AEFG,并簡要說明點E,G的位置是如何找到的. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋中裝有5個只有顏色不同的球,其中3個黃球,2個黑球.
(1)求從袋中同時摸出的兩個球都是黃球的概率;
(2)現(xiàn)將黑球和白球若干個(黑球個數(shù)是白球個數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個球是黑球的概率是,求放入袋中的黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交、兩點(點在點左側(cè)),直線與拋物線交于、兩點,其中點的橫坐標為2.
(1)求、兩點的坐標及直線的函數(shù)表達式;
(2)是線段上的一個動點,過點作軸的平行線交拋物線于點,求線段長度的最大值;
(3)點是拋物線上的動點,在軸上是否存在點,使、、、四個點為頂點的四邊形是平行四邊形?如果存在,寫出所有滿足條件的點坐標(請直接寫出點的坐標,不要求寫過程);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O的上,點E在⊙O的外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com